On tensor fractions and tensor products in the category of stereotype spaces
Sbornik. Mathematics, Tome 213 (2022) no. 5, pp. 579-603 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove two identities that connect some natural tensor products in the category $\operatorname{LCS}$ of locally convex spaces with tensor products in the category $\operatorname{Ste}$ of stereotype spaces. In particular, we give sufficient conditions under which the identity $$ X^\vartriangle\odot Y^\vartriangle\cong (X^\vartriangle\cdot Y^\vartriangle)^\vartriangle\cong (X\cdot Y)^\vartriangle $$ holds, where $\odot$ is the injective tensor product in the category $\operatorname{Ste}$, $\cdot\,$ is the primary tensor product in $\operatorname{LCS}$, and $\vartriangle$ is the pseudosaturation operation in $\operatorname{LCS}$. The study of relations of this type is justified by the fact that they turn out to be important instruments for constructing duality theory based on the notion of an envelope. In particular, they are used in the construction of the duality theory for the class of (not necessarily Abelian) countable discrete groups. Bibliography: 15 titles.
Keywords: stereotype space
Mots-clés : pseudosaturation.
@article{SM_2022_213_5_a0,
     author = {S. S. Akbarov},
     title = {On tensor fractions and tensor products in the category of stereotype spaces},
     journal = {Sbornik. Mathematics},
     pages = {579--603},
     year = {2022},
     volume = {213},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2022_213_5_a0/}
}
TY  - JOUR
AU  - S. S. Akbarov
TI  - On tensor fractions and tensor products in the category of stereotype spaces
JO  - Sbornik. Mathematics
PY  - 2022
SP  - 579
EP  - 603
VL  - 213
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2022_213_5_a0/
LA  - en
ID  - SM_2022_213_5_a0
ER  - 
%0 Journal Article
%A S. S. Akbarov
%T On tensor fractions and tensor products in the category of stereotype spaces
%J Sbornik. Mathematics
%D 2022
%P 579-603
%V 213
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2022_213_5_a0/
%G en
%F SM_2022_213_5_a0
S. S. Akbarov. On tensor fractions and tensor products in the category of stereotype spaces. Sbornik. Mathematics, Tome 213 (2022) no. 5, pp. 579-603. http://geodesic.mathdoc.fr/item/SM_2022_213_5_a0/

[1] S. S. Akbarov, “Pontryagin duality in the theory of topological vector spaces”, Mat. Zametki, 57:3 (1995), 463–466 ; English transl. in Math. Notes, 57:3 (1995), 319–322 | MR | Zbl | DOI

[2] S. S. Akbarov, “Pontryagin duality in the theory of topological modules”, Funktsional. Anal. i Prilozhen., 29:4 (1995), 68–72 ; English transl. in Funct. Anal. Appl., 29:4 (1995), 276–279 | MR | Zbl | DOI

[3] S. S. Akbarov, “Pontryagin duality in the theory of topological vector spaces and in topological algebra”, J. Math. Sci. (N.Y.), 113:2 (2003), 179–349 | DOI | MR | Zbl

[4] S. S. Akbarov, “Holomorphic functions of exponential type and duality for Stein groups with algebraic connected component of identity”, Fundam. Prikl. Mat., 14:1 (2008), 3–178 ; English transl. in J. Math. Sci. (N.Y.), 162:4 (2009), 459–586 ; arXiv: 0806.3205 | MR | Zbl | DOI

[5] S. S. Akbarov, Envelopes and refinements in categories, with applications to functional analysis, Dissertationes Math., 513, Polish Acad. Sci. Inst. Math., Warsaw, 2016, 188 pp. ; arXiv: 1110.2013 | DOI | MR | Zbl

[6] G. Köthe, Topological vector spaces. I, Grundlehren Math. Wiss., 159, Springer-Verlag, New York, 1969, xv+456 pp. | MR | Zbl

[7] O. Yu. Aristov, On holomorphic reflexivity conditions for complex Lie groups, arXiv: 2002.03617

[8] S. S. Akbarov, Holomorphic duality for countable discrete groups, arXiv: 2009.03372

[9] Yu. Kuznetsova, “A duality for Moore groups”, J. Operator Theory, 69:2 (2013), 571–600 ; arXiv: 0907.1409 | DOI | MR | Zbl

[10] S. S. Akbarov, “Continuous and smooth envelopes of topological algebras. Part I”, Functional analysis, Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 129, VINITI RAS, Moscow, 2017, 3–133 ; English transl. in J. Math. Sci. (N.Y.), 227:5 (2017), 531–668 ; arXiv: 1303.2424 | MR | Zbl | DOI

[11] S. S. Akbarov, “Continuous and smooth envelopes of topological algebras. Part II”, Functional analysis, Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 130, VINITI RAS, Moscow, 2017, 3–112 ; English transl. in J. Math. Sci. (N.Y.), 227:6 (2017), 669–789 ; arXiv: 1303.2424 | MR | Zbl | DOI

[12] S. S. Akbarov, On continuous duality for Moore groups, arXiv: 1803.02812

[13] K.-D. Bierstedt, “Gewichtete Räume stetiger vektorwertiger Funktionen und das injektive Tensorprodukt. I”, J. Reine Angew. Math., 1973:259 (1973), 186–210 | DOI | MR | Zbl

[14] H. Jarchow, Locally convex spaces, Mathematische Leitfäden, B. G. Teubner, Stuttgart, 1981, 548 pp. | MR | Zbl

[15] A. Pietsch, Nukleare lokalkonvexe Räume, Schriftenreihe Inst. Math. Deutsch. Akad. Wiss. Berlin, Reihe A, Reine Mathematik, 1, Akademie-Verlag, Berlin, 1965, viii+167 pp. | MR | Zbl