Extremal functional $L_p$-interpolation on an arbitrary mesh on the real axis
Sbornik. Mathematics, Tome 213 (2022) no. 4, pp. 556-577

Voir la notice de l'article provenant de la source Math-Net.Ru

The Golomb-de Boor problem of extremal interpolation of infinite real sequences with smallest $L_p$-norm of the $n$th derivative of the interpolant, $1\le p\le \infty$, on an arbitrary mesh on the real axis is studied under constraints on the norms of the corresponding divided differences. For this smallest norm, lower estimates are obtained for any $n\in \mathbb N$ in terms of $B$-splines. For the second derivative, this quantity is estimated from below and above by constants depending on the parameter $p$. Bibliography: 13 titles.
Keywords: extremal interpolation, derivative, divided difference, spline, difference equation.
@article{SM_2022_213_4_a5,
     author = {Yu. N. Subbotin and V. T. Shevaldin},
     title = {Extremal functional $L_p$-interpolation on an arbitrary mesh on the real axis},
     journal = {Sbornik. Mathematics},
     pages = {556--577},
     publisher = {mathdoc},
     volume = {213},
     number = {4},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2022_213_4_a5/}
}
TY  - JOUR
AU  - Yu. N. Subbotin
AU  - V. T. Shevaldin
TI  - Extremal functional $L_p$-interpolation on an arbitrary mesh on the real axis
JO  - Sbornik. Mathematics
PY  - 2022
SP  - 556
EP  - 577
VL  - 213
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2022_213_4_a5/
LA  - en
ID  - SM_2022_213_4_a5
ER  - 
%0 Journal Article
%A Yu. N. Subbotin
%A V. T. Shevaldin
%T Extremal functional $L_p$-interpolation on an arbitrary mesh on the real axis
%J Sbornik. Mathematics
%D 2022
%P 556-577
%V 213
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2022_213_4_a5/
%G en
%F SM_2022_213_4_a5
Yu. N. Subbotin; V. T. Shevaldin. Extremal functional $L_p$-interpolation on an arbitrary mesh on the real axis. Sbornik. Mathematics, Tome 213 (2022) no. 4, pp. 556-577. http://geodesic.mathdoc.fr/item/SM_2022_213_4_a5/