@article{SM_2022_213_4_a5,
author = {Yu. N. Subbotin and V. T. Shevaldin},
title = {Extremal functional $L_p$-interpolation on an arbitrary mesh on the real axis},
journal = {Sbornik. Mathematics},
pages = {556--577},
year = {2022},
volume = {213},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2022_213_4_a5/}
}
Yu. N. Subbotin; V. T. Shevaldin. Extremal functional $L_p$-interpolation on an arbitrary mesh on the real axis. Sbornik. Mathematics, Tome 213 (2022) no. 4, pp. 556-577. http://geodesic.mathdoc.fr/item/SM_2022_213_4_a5/
[1] M. Golomb, “$H^{m,p}$-extensions by $H^{m,p}$-splines”, J. Approximation Theory, 5:3 (1972), 238–275 | DOI | MR | Zbl
[2] C. de Boor, “How small can one make the derivatives of an interpolating function?”, J. Approximation Theory, 13:2 (1975), 105–116 | DOI | MR | Zbl
[3] J. Favard, “Sur I'interpolation”, J. Math. Pures Appl. (9), 19 (1940), 281–306 | MR | Zbl
[4] Yu. N. Subbotin, “O svyazi mezhdu konechnymi raznostyami i sootvetstvuyuschimi proizvodnymi”, Ekstremalnye svoistva polinomov, Sbornik rabot, Tr. MIAN SSSR, 78, Nauka, M., 1965, 24–42 | MR | Zbl
[5] Yu. N. Subbotin, “Functional interpolation in the mean with smallest $n$ derivative”, Proc. Steklov Inst. Math., 88 (1967), 31–63 | MR | Zbl
[6] Yu. N. Subbotin, “Extremal problems of functional interpolation, and mean interpolation splines”, Proc. Steklov Inst. Math., 138 (1977), 127–185 | MR | Zbl
[7] Yu. N. Subbotin, S. I. Novikov, V. T. Shevaldin, “Ekstremalnaya funktsionalnaya interpolyatsiya i splainy”, Tr. IMM UrO RAN, 24, no. 3, 2018, 200–225 | DOI | MR
[8] C. de Boor, “A smooth and local interpolant with “small” $k$-th derivative”, Numerical solutions of boundary value problems for ordinary differential equations (Univ. Maryland, Baltimore, MD, 1974), Academic Press, New York, 1975, 177–197 | MR | Zbl
[9] Th. Kunkle, “Favard's interpolation problem in one or more variables”, Constr. Approx., 18:4 (2002), 467–478 | DOI | MR | Zbl
[10] S. I. Novikov, V. T. Shevaldin, “O svyazi mezhdu vtoroi razdelennoi raznostyu i vtoroi proizvodnoi”, Tr. IMM UrO RAN, 26, no. 2, 2020, 216–224 | DOI | MR
[11] S. B. Stechkin, Yu. N. Subbotin, Splainy v vychislitelnoi matematike, Nauka, M., 1976, 248 pp. | MR | Zbl
[12] S. I. Novikov, V. T. Shevaldin, “Ekstremalnaya interpolyatsiya na poluosi s naimenshim znacheniem normy tretei proizvodnoi”, Tr. IMM UrO RAN, 26, no. 4, 2020, 210–223 | DOI | MR
[13] Yu. S. Zavyalov, B. I. Kvasov, V. L. Miroshnichenko, Metody splain-funktsii, Nauka, M., 1980, 352 pp. | MR | Zbl