Extremal functional $L_p$-interpolation on an arbitrary mesh on the real axis
Sbornik. Mathematics, Tome 213 (2022) no. 4, pp. 556-577
Voir la notice de l'article provenant de la source Math-Net.Ru
The Golomb-de Boor problem of extremal interpolation of infinite real sequences with smallest $L_p$-norm of the $n$th derivative of the interpolant, $1\le p\le \infty$, on an arbitrary mesh on the real axis is studied under constraints on the norms of the corresponding divided differences. For this smallest norm, lower estimates are obtained for any $n\in \mathbb N$ in terms of $B$-splines. For the second derivative, this quantity is estimated from below and above by constants depending on the parameter $p$.
Bibliography: 13 titles.
Keywords:
extremal interpolation, derivative, divided difference, spline, difference equation.
@article{SM_2022_213_4_a5,
author = {Yu. N. Subbotin and V. T. Shevaldin},
title = {Extremal functional $L_p$-interpolation on an arbitrary mesh on the real axis},
journal = {Sbornik. Mathematics},
pages = {556--577},
publisher = {mathdoc},
volume = {213},
number = {4},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2022_213_4_a5/}
}
TY - JOUR AU - Yu. N. Subbotin AU - V. T. Shevaldin TI - Extremal functional $L_p$-interpolation on an arbitrary mesh on the real axis JO - Sbornik. Mathematics PY - 2022 SP - 556 EP - 577 VL - 213 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2022_213_4_a5/ LA - en ID - SM_2022_213_4_a5 ER -
Yu. N. Subbotin; V. T. Shevaldin. Extremal functional $L_p$-interpolation on an arbitrary mesh on the real axis. Sbornik. Mathematics, Tome 213 (2022) no. 4, pp. 556-577. http://geodesic.mathdoc.fr/item/SM_2022_213_4_a5/