@article{SM_2022_213_4_a4,
author = {A. P. Mashtakov},
title = {Time minimization problem on the group of motions of a~plane with admissible control in a~half-disc},
journal = {Sbornik. Mathematics},
pages = {534--555},
year = {2022},
volume = {213},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2022_213_4_a4/}
}
A. P. Mashtakov. Time minimization problem on the group of motions of a plane with admissible control in a half-disc. Sbornik. Mathematics, Tome 213 (2022) no. 4, pp. 534-555. http://geodesic.mathdoc.fr/item/SM_2022_213_4_a4/
[1] L. E. Dubins, “On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents”, Amer. J. Math., 79:3 (1957), 497–516 | DOI | MR | Zbl
[2] J. A. Reeds, L. A. Shepp, “Optimal paths for a car that goes both forwards and backwards”, Pacific J. Math., 145:2 (1990), 367–393 | DOI | MR
[3] Y. L. Sachkov, “Cut locus and optimal synthesis in the sub-Riemannian problem on the group of motions of a plane”, ESAIM Control Optim. Calc. Var., 17:2 (2011), 293–321 | DOI | MR | Zbl
[4] R. Duits, S. P. L. Meesters, J.-M. Mirebeau, J. M. Portegies, “Optimal paths for variants of the $2D$ and $3D$ Reeds–Shepp car with applications in image analysis”, J. Math. Imaging Vision, 60:6 (2018), 816–848 | DOI | MR | Zbl
[5] J.-P. Laumond, “Feasible trajectories for mobile robots with kinematic and environment constraints”, Intelligent autonomous systems (Amsterdam, 1986), North-Holland Publishing Co., Amsterdam, 1987, 346–354 | MR
[6] R. Montgomery, A tour of subriemannian geometries, their geodesics and applications, Math. Surveys Monogr., 91, Amer. Math. Soc., Providence, RI, 2002, xx+259 pp. | DOI | MR | Zbl
[7] H. J. Sussmann, Guoqing Tang, Shortest paths for the Reeds–Shepp car: a worked out example of the use of geometric techniques in nonlinear optimal control, Report SYCON1-10, Rutgers Univ., 1991, 72 pp. https://sites.math.rutgers.edu/~sussmann/currentpapers.html
[8] V. N. Berestovskii, “Geodesics of a left-invariant nonholonomic Riemannian metric on the group of motions of the Euclidean plane”, Siberian Math. J., 35:6 (1994), 1083–1088 | DOI | MR | Zbl
[9] G. Sanguinetti, E. Bekkers, R. Duits, M. H. J. Janssen, A. Mashtakov, J. M. Mirebeau, “Sub-Riemannian fast marching in $\operatorname{SE}(2)$”, Progress in pattern recognition, image analysis, computer vision, and applications, Lecture Notes in Comput. Sci., 9423, Springer, Cham, 2015, 366–374 | DOI | MR
[10] E. J. Bekkers, R. Duits, A. Mashtakov, Y. Sachkov, “Vessel tracking via sub-Riemannian geodesics on the projective line bundle”, Geometric science of information, Lecture Notes in Comput. Sci., 10589, Springer, Cham, 2017, 773–781 | DOI | MR | Zbl
[11] A. A. Agrachev, Yu. L. Sachkov, Control theory from the geometric viewpoint, Encyclopaedia Math. Sci., 87, Control theory and optimization II, Springer-Verlag, Berlin, 2004, xiv+412 pp. | DOI | MR | Zbl | Zbl
[12] A. A. Ardentov, L. V. Lokutsievskiy, Yu. L. Sachkov, “Explicit solutions for a series of optimization problems with 2-dimensional control via convex trigonometry”, Dokl. Math., 102:2 (2020), 427–432 | DOI | DOI | Zbl
[13] J. Petitot, “The neurogeometry of pinwheels as a sub-Riemannian contact structure”, J. Physiol. Paris, 97:2-3 (2003), 265–309 | DOI
[14] G. Citti, A. Sarti, “A cortical based model of perceptual completion in the roto-translation space”, J. Math. Imaging Vision, 24:3 (2006), 307–326 | DOI | MR | Zbl
[15] U. Boscain, R. A. Chertovskih, J. P. Gauthier, A. O. Remizov, “Hypoelliptic diffusion and human vision: a semidiscrete new twist”, SIAM J. Imaging Sci., 7:2 (2014), 669–695 | DOI | MR | Zbl
[16] U. Boscain, J.-P. Gauthier, D. Prandi, A. Remizov, “Image reconstruction via non-isotropic diffusion in Dubins/Reed–Shepp-like control systems”, 53rd IEEE conference on decision and control (Los Angeles, CA, 2014), IEEE, 2014, 4278–4283 | DOI
[17] A. P. Mashtakov, A. A. Ardentov, Yu. L. Sachkov, “Parallel algorithm and software for image inpainting via sub-Riemannian minimizers on the group of rototranslations”, Numer. Math. Theory Methods Appl., 6:1 (2013), 95–115 | DOI | MR | Zbl
[18] B. Franceschiello, A. Mashtakov, G. Citti, A. Sarti, “Geometrical optical illusion via sub-Riemannian geodesics in the roto-translation group”, Differential Geom. Appl., 65 (2019), 55–77 | DOI | MR | Zbl
[19] R. Duits, U. Boscain, F. Rossi, Y. Sachkov, “Association fields via cuspless sub-Riemannian geodesics in $\operatorname{SE}(2)$”, J. Math. Imaging Vision, 49:2 (2014), 384–417 | DOI | MR | Zbl
[20] U. Boscain, R. Duits, F. Rossi, Yu. Sachkov, “Curve cuspless reconstruction via sub-Riemannian geometry”, ESAIM Control Optim. Calc. Var., 20:3 (2014), 748–770 | DOI | MR | Zbl
[21] D. J. Field, A. Hayes, R. F. Hess, “Contour integration by the human visual system: evidence for a local “association field””, Vision Res., 33:2 (1993), 173–193 | DOI
[22] R. Duits, M. Felsberg, G. Granlund, B. Romeny, “Image analysis and reconstruction using a wavelet transform constructed from a reducible representation of the Euclidean motion group”, Int. J. Comput. Vis., 72:1 (2007), 79–102 | DOI
[23] E. J. Bekkers, R. Duits, A. Mashtakov, G. R. Sanguinetti, “A PDE approach to data-driven sub-Riemannian geodesics in $\operatorname{SE}(2)$”, SIAM J. Imaging Sci., 8:4 (2015), 2740–2770 | DOI | MR | Zbl
[24] A. Mashtakov, R. Duits, Yu. Sachkov, E. J. Bekkers, I. Beschastnyi, “Tracking of lines in spherical images via sub-Riemannian geodesics in $\operatorname{SO}(3)$”, J. Math. Imaging Vision, 58:2 (2017), 239–264 | DOI | MR | Zbl
[25] R. Duits, A. Ghosh, T. C. J. Dela Haije, A. Mashtakov, “On sub-Riemannian geodesics in $\operatorname{SE}(3)$ whose spatial projections do not have cusps”, J. Dyn. Control Syst., 22:4 (2016), 771–805 | DOI | MR | Zbl
[26] W. L. J. Scharpach, Optimal paths for the Reeds–Shepp car with monotone spatial control and vessel tracking in medical image analysis, MSc. Thesis, Univ. of Technology, Eindhoven, 2018, 60 pp. https://pure.tue.nl/ws/portalfiles/portal/109484202/Scharpach_W.pdf
[27] M. I. Zelikin, Optimalnoe upravlenie i variatsionnoe ischislenie, 2-e izd., Editorial URSS, M., 2004, 160 pp.
[28] A. Agrachev, D. Barilari, U. Boscain, A comprehensive introduction to sub-Riemannian geometry. From the Hamiltonian viewpoint, Cambridge Stud. Adv. Math., 181, Cambridge Univ. Press, Cambridge, 2020, xviii+745 pp. | DOI | MR | Zbl
[29] C. Laurent-Gengoux, A. Pichereau, P. Vanhaecke, Poisson structures, Grundlehren Math. Wiss., 347, Springer, Heidelberg, 2013, xxiv+461 pp. | DOI | MR | Zbl
[30] M. Lakshmanan, S. Rajasekar, Nonlinear dynamics. Integrability, chaos and patterns, Adv. Texts Phys., Springer-Verlag, Berlin, 2003, xx+619 pp. | DOI | MR | Zbl
[31] P. M. Mathews, M. Lakshmanan, “Dynamics of a nonlinear field”, Ann. Physics, 79:1 (1973), 171–185 | DOI
[32] V. I. Arnol'd, Ordinary differential equations, Springer Textbook, Springer-Verlag, Berlin, 1992, 334 pp. | MR | Zbl
[33] P. F. Byrd, M. D. Friedman, “Table of integrals of Jacobian elliptic functions”, Handbook of elliptic integrals for engineers and scientists, Grundlehren Math. Wiss., 67, Springer, Berlin–Heidelberg, 1971, 191–222 | DOI | MR | Zbl