Time minimization problem on the group of motions of a plane with admissible control in a half-disc
Sbornik. Mathematics, Tome 213 (2022) no. 4, pp. 534-555 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The time minimization problem with admissible control in a half-disc is considered on the group of motions of a plane. The control system under study provides a model of a car on the plane that can move forwards or rotate in place. Optimal trajectories of such a system are used to detect salient curves in image analysis. In particular, in medical image analysis such trajectories are used for tracking vessels in retinal images. The problem is of independent interest in geometric control theory: it provides a model example when the set of values of the control parameters contains zero at the boundary. The problem of controllability and existence of optimal trajectories is studied. By analysing the Hamiltonian system of the Pontryagin maximum principle the explicit form of extremal controls and trajectories is found. Optimality of the extremals is partially investigated. The structure of the optimal synthesis is described. Bibliography: 33 titles.
Keywords: sub-Riemannian geometry, geodesics, optimal control problem.
@article{SM_2022_213_4_a4,
     author = {A. P. Mashtakov},
     title = {Time minimization problem on the group of motions of a~plane with admissible control in a~half-disc},
     journal = {Sbornik. Mathematics},
     pages = {534--555},
     year = {2022},
     volume = {213},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2022_213_4_a4/}
}
TY  - JOUR
AU  - A. P. Mashtakov
TI  - Time minimization problem on the group of motions of a plane with admissible control in a half-disc
JO  - Sbornik. Mathematics
PY  - 2022
SP  - 534
EP  - 555
VL  - 213
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2022_213_4_a4/
LA  - en
ID  - SM_2022_213_4_a4
ER  - 
%0 Journal Article
%A A. P. Mashtakov
%T Time minimization problem on the group of motions of a plane with admissible control in a half-disc
%J Sbornik. Mathematics
%D 2022
%P 534-555
%V 213
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2022_213_4_a4/
%G en
%F SM_2022_213_4_a4
A. P. Mashtakov. Time minimization problem on the group of motions of a plane with admissible control in a half-disc. Sbornik. Mathematics, Tome 213 (2022) no. 4, pp. 534-555. http://geodesic.mathdoc.fr/item/SM_2022_213_4_a4/

[1] L. E. Dubins, “On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents”, Amer. J. Math., 79:3 (1957), 497–516 | DOI | MR | Zbl

[2] J. A. Reeds, L. A. Shepp, “Optimal paths for a car that goes both forwards and backwards”, Pacific J. Math., 145:2 (1990), 367–393 | DOI | MR

[3] Y. L. Sachkov, “Cut locus and optimal synthesis in the sub-Riemannian problem on the group of motions of a plane”, ESAIM Control Optim. Calc. Var., 17:2 (2011), 293–321 | DOI | MR | Zbl

[4] R. Duits, S. P. L. Meesters, J.-M. Mirebeau, J. M. Portegies, “Optimal paths for variants of the $2D$ and $3D$ Reeds–Shepp car with applications in image analysis”, J. Math. Imaging Vision, 60:6 (2018), 816–848 | DOI | MR | Zbl

[5] J.-P. Laumond, “Feasible trajectories for mobile robots with kinematic and environment constraints”, Intelligent autonomous systems (Amsterdam, 1986), North-Holland Publishing Co., Amsterdam, 1987, 346–354 | MR

[6] R. Montgomery, A tour of subriemannian geometries, their geodesics and applications, Math. Surveys Monogr., 91, Amer. Math. Soc., Providence, RI, 2002, xx+259 pp. | DOI | MR | Zbl

[7] H. J. Sussmann, Guoqing Tang, Shortest paths for the Reeds–Shepp car: a worked out example of the use of geometric techniques in nonlinear optimal control, Report SYCON1-10, Rutgers Univ., 1991, 72 pp. https://sites.math.rutgers.edu/~sussmann/currentpapers.html

[8] V. N. Berestovskii, “Geodesics of a left-invariant nonholonomic Riemannian metric on the group of motions of the Euclidean plane”, Siberian Math. J., 35:6 (1994), 1083–1088 | DOI | MR | Zbl

[9] G. Sanguinetti, E. Bekkers, R. Duits, M. H. J. Janssen, A. Mashtakov, J. M. Mirebeau, “Sub-Riemannian fast marching in $\operatorname{SE}(2)$”, Progress in pattern recognition, image analysis, computer vision, and applications, Lecture Notes in Comput. Sci., 9423, Springer, Cham, 2015, 366–374 | DOI | MR

[10] E. J. Bekkers, R. Duits, A. Mashtakov, Y. Sachkov, “Vessel tracking via sub-Riemannian geodesics on the projective line bundle”, Geometric science of information, Lecture Notes in Comput. Sci., 10589, Springer, Cham, 2017, 773–781 | DOI | MR | Zbl

[11] A. A. Agrachev, Yu. L. Sachkov, Control theory from the geometric viewpoint, Encyclopaedia Math. Sci., 87, Control theory and optimization II, Springer-Verlag, Berlin, 2004, xiv+412 pp. | DOI | MR | Zbl | Zbl

[12] A. A. Ardentov, L. V. Lokutsievskiy, Yu. L. Sachkov, “Explicit solutions for a series of optimization problems with 2-dimensional control via convex trigonometry”, Dokl. Math., 102:2 (2020), 427–432 | DOI | DOI | Zbl

[13] J. Petitot, “The neurogeometry of pinwheels as a sub-Riemannian contact structure”, J. Physiol. Paris, 97:2-3 (2003), 265–309 | DOI

[14] G. Citti, A. Sarti, “A cortical based model of perceptual completion in the roto-translation space”, J. Math. Imaging Vision, 24:3 (2006), 307–326 | DOI | MR | Zbl

[15] U. Boscain, R. A. Chertovskih, J. P. Gauthier, A. O. Remizov, “Hypoelliptic diffusion and human vision: a semidiscrete new twist”, SIAM J. Imaging Sci., 7:2 (2014), 669–695 | DOI | MR | Zbl

[16] U. Boscain, J.-P. Gauthier, D. Prandi, A. Remizov, “Image reconstruction via non-isotropic diffusion in Dubins/Reed–Shepp-like control systems”, 53rd IEEE conference on decision and control (Los Angeles, CA, 2014), IEEE, 2014, 4278–4283 | DOI

[17] A. P. Mashtakov, A. A. Ardentov, Yu. L. Sachkov, “Parallel algorithm and software for image inpainting via sub-Riemannian minimizers on the group of rototranslations”, Numer. Math. Theory Methods Appl., 6:1 (2013), 95–115 | DOI | MR | Zbl

[18] B. Franceschiello, A. Mashtakov, G. Citti, A. Sarti, “Geometrical optical illusion via sub-Riemannian geodesics in the roto-translation group”, Differential Geom. Appl., 65 (2019), 55–77 | DOI | MR | Zbl

[19] R. Duits, U. Boscain, F. Rossi, Y. Sachkov, “Association fields via cuspless sub-Riemannian geodesics in $\operatorname{SE}(2)$”, J. Math. Imaging Vision, 49:2 (2014), 384–417 | DOI | MR | Zbl

[20] U. Boscain, R. Duits, F. Rossi, Yu. Sachkov, “Curve cuspless reconstruction via sub-Riemannian geometry”, ESAIM Control Optim. Calc. Var., 20:3 (2014), 748–770 | DOI | MR | Zbl

[21] D. J. Field, A. Hayes, R. F. Hess, “Contour integration by the human visual system: evidence for a local “association field””, Vision Res., 33:2 (1993), 173–193 | DOI

[22] R. Duits, M. Felsberg, G. Granlund, B. Romeny, “Image analysis and reconstruction using a wavelet transform constructed from a reducible representation of the Euclidean motion group”, Int. J. Comput. Vis., 72:1 (2007), 79–102 | DOI

[23] E. J. Bekkers, R. Duits, A. Mashtakov, G. R. Sanguinetti, “A PDE approach to data-driven sub-Riemannian geodesics in $\operatorname{SE}(2)$”, SIAM J. Imaging Sci., 8:4 (2015), 2740–2770 | DOI | MR | Zbl

[24] A. Mashtakov, R. Duits, Yu. Sachkov, E. J. Bekkers, I. Beschastnyi, “Tracking of lines in spherical images via sub-Riemannian geodesics in $\operatorname{SO}(3)$”, J. Math. Imaging Vision, 58:2 (2017), 239–264 | DOI | MR | Zbl

[25] R. Duits, A. Ghosh, T. C. J. Dela Haije, A. Mashtakov, “On sub-Riemannian geodesics in $\operatorname{SE}(3)$ whose spatial projections do not have cusps”, J. Dyn. Control Syst., 22:4 (2016), 771–805 | DOI | MR | Zbl

[26] W. L. J. Scharpach, Optimal paths for the Reeds–Shepp car with monotone spatial control and vessel tracking in medical image analysis, MSc. Thesis, Univ. of Technology, Eindhoven, 2018, 60 pp. https://pure.tue.nl/ws/portalfiles/portal/109484202/Scharpach_W.pdf

[27] M. I. Zelikin, Optimalnoe upravlenie i variatsionnoe ischislenie, 2-e izd., Editorial URSS, M., 2004, 160 pp.

[28] A. Agrachev, D. Barilari, U. Boscain, A comprehensive introduction to sub-Riemannian geometry. From the Hamiltonian viewpoint, Cambridge Stud. Adv. Math., 181, Cambridge Univ. Press, Cambridge, 2020, xviii+745 pp. | DOI | MR | Zbl

[29] C. Laurent-Gengoux, A. Pichereau, P. Vanhaecke, Poisson structures, Grundlehren Math. Wiss., 347, Springer, Heidelberg, 2013, xxiv+461 pp. | DOI | MR | Zbl

[30] M. Lakshmanan, S. Rajasekar, Nonlinear dynamics. Integrability, chaos and patterns, Adv. Texts Phys., Springer-Verlag, Berlin, 2003, xx+619 pp. | DOI | MR | Zbl

[31] P. M. Mathews, M. Lakshmanan, “Dynamics of a nonlinear field”, Ann. Physics, 79:1 (1973), 171–185 | DOI

[32] V. I. Arnol'd, Ordinary differential equations, Springer Textbook, Springer-Verlag, Berlin, 1992, 334 pp. | MR | Zbl

[33] P. F. Byrd, M. D. Friedman, “Table of integrals of Jacobian elliptic functions”, Handbook of elliptic integrals for engineers and scientists, Grundlehren Math. Wiss., 67, Springer, Berlin–Heidelberg, 1971, 191–222 | DOI | MR | Zbl