Mots-clés : configuration space, dimension.
@article{SM_2022_213_4_a3,
author = {M. D. Kovalev},
title = {Configuration spaces of hinged mechanisms, and their projections},
journal = {Sbornik. Mathematics},
pages = {512--533},
year = {2022},
volume = {213},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2022_213_4_a3/}
}
M. D. Kovalev. Configuration spaces of hinged mechanisms, and their projections. Sbornik. Mathematics, Tome 213 (2022) no. 4, pp. 512-533. http://geodesic.mathdoc.fr/item/SM_2022_213_4_a3/
[1] M. Kapovich, J. J. Millson, “Universality theorems for configurations of planar linkages”, Topology, 41:6 (2002), 1051–1107 | DOI | MR | Zbl
[2] H. C. King, “Planar linkages and algebraic sets”, Turkish J. Math., 23:1 (1999), 33–56 ; (1998), arXiv: math/9807023 | MR | Zbl
[3] H. C. King, Semiconfiguration spaces of planar linkages, 1998, arXiv: math/9810130
[4] A. B. Kempe, “On a general method of describing plane curves of the $n^{th}$ degree by Linkwork”, Proc. Lond. Math. Soc., 7 (1876), 213–216 | DOI | MR | Zbl
[5] M. D. Kovalev, Geometricheskie voprosy kinematiki i statiki, Lenand, M., 2019, 256 pp.
[6] M. D. Kovalev, “Chto takoe sharnirnyi mekhanizm? I chto zhe dokazal Kempe?”, Trudy mezhdunarodnoi konferentsii {“}Klassicheskaya i sovremennaya geometriya{\rm”}, posvyaschennoi 100-letiyu so dnya rozhdeniya professora Vyacheslava Timofeevicha Bazyleva (Moskva, 22–25 aprelya 2019 g.), Chast 1, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 179, VINITI RAN, M., 2020, 16–28 | DOI | MR
[7] J. Bochnak, M. Coste, M.-F. Roy, Real algebraic geometry, Ergeb. Math. Grenzgeb. (3), 36, Springer-Verlag, Berlin, 1998, x+430 pp. | DOI | MR | Zbl
[8] R. Benedetti, J.-J. Risler, Real algebraic and semi-algebraic sets, Actualités Math., Hermann, Paris, 1990, 340 pp. | MR | Zbl
[9] S. Akbulut, H. King, Topology of real algebraic sets, Math. Sci. Res. Inst. Publ., 25, Springer-Verlag, New York, 1992, x+249 pp. | DOI | MR | Zbl
[10] D. Cox, J. Little, D. O'Shea, Ideals, varieties, and algorithms. An introduction to computational algebraic geometry and commutative algebra, Undergrad. Texts Math., Springer-Verlag, New York, 1992, xii+513 pp. | DOI | MR | Zbl
[11] M. D. Kovalev, “Geometric theory of hinged devices”, Russian Acad. Sci. Izv. Math., 44:1 (1995), 43–68 | DOI | MR | Zbl
[12] M. D. Kovalev, “Voprosy geometrii sharnirnykh ustroistv i skhem”, Vestnik MGTU. Seriya Mashinostroenie, 2001, no. 4, 33–51
[13] E. A. Gorin, “Asymptotic properties of polynomials and algebraic functions of several variables”, Russian Math. Surveys, 16:1 (1961), 93–119 | DOI | MR | Zbl
[14] D. Jordan, M. Steiner, “Configuration spaces of mechanical linkages”, Discrete Comput. Geom., 22:2 (1999), 297–315 | DOI | MR | Zbl
[15] I. R. Shafarevich, Basic algebraic geometry, v. 1, 2nd ed., Springer-Verlag, Berlin, 1994, xx+303 pp. | MR | MR | Zbl | Zbl
[16] Éd. Goursat, Cours d'analyse mathématique, v. I, 5 éd., Gauthier-Villars, Paris, 1927, 674 pp. | MR | Zbl
[17] M. D. Kovalev, “Some properties of rigidity mappings”, J. Math. Sci. (N.Y.), 149:1 (2008), 947–955 | DOI | MR | Zbl