Configuration spaces of hinged mechanisms, and their projections
Sbornik. Mathematics, Tome 213 (2022) no. 4, pp. 512-533 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Our subject is the geometry of planar hinged mechanisms. The article contains a formalization of basic concepts of the theory of hinged-lever constructions, as well as some information from real algebraic geometry needed for their study. We consider mechanisms with variable number of degrees of freedom and mechanisms that have more than one degree of freedom but each hinge of which moves with one degree of freedom. For the last type we find the dimension of the configuration space. We give a number of examples of mechanisms with unusual geometric properties and formulate open questions. Bibliography: 17 titles.
Keywords: hinged mechanism, reducibility
Mots-clés : configuration space, dimension.
@article{SM_2022_213_4_a3,
     author = {M. D. Kovalev},
     title = {Configuration spaces of hinged mechanisms, and their projections},
     journal = {Sbornik. Mathematics},
     pages = {512--533},
     year = {2022},
     volume = {213},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2022_213_4_a3/}
}
TY  - JOUR
AU  - M. D. Kovalev
TI  - Configuration spaces of hinged mechanisms, and their projections
JO  - Sbornik. Mathematics
PY  - 2022
SP  - 512
EP  - 533
VL  - 213
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2022_213_4_a3/
LA  - en
ID  - SM_2022_213_4_a3
ER  - 
%0 Journal Article
%A M. D. Kovalev
%T Configuration spaces of hinged mechanisms, and their projections
%J Sbornik. Mathematics
%D 2022
%P 512-533
%V 213
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2022_213_4_a3/
%G en
%F SM_2022_213_4_a3
M. D. Kovalev. Configuration spaces of hinged mechanisms, and their projections. Sbornik. Mathematics, Tome 213 (2022) no. 4, pp. 512-533. http://geodesic.mathdoc.fr/item/SM_2022_213_4_a3/

[1] M. Kapovich, J. J. Millson, “Universality theorems for configurations of planar linkages”, Topology, 41:6 (2002), 1051–1107 | DOI | MR | Zbl

[2] H. C. King, “Planar linkages and algebraic sets”, Turkish J. Math., 23:1 (1999), 33–56 ; (1998), arXiv: math/9807023 | MR | Zbl

[3] H. C. King, Semiconfiguration spaces of planar linkages, 1998, arXiv: math/9810130

[4] A. B. Kempe, “On a general method of describing plane curves of the $n^{th}$ degree by Linkwork”, Proc. Lond. Math. Soc., 7 (1876), 213–216 | DOI | MR | Zbl

[5] M. D. Kovalev, Geometricheskie voprosy kinematiki i statiki, Lenand, M., 2019, 256 pp.

[6] M. D. Kovalev, “Chto takoe sharnirnyi mekhanizm? I chto zhe dokazal Kempe?”, Trudy mezhdunarodnoi konferentsii {“}Klassicheskaya i sovremennaya geometriya{\rm”}, posvyaschennoi 100-letiyu so dnya rozhdeniya professora Vyacheslava Timofeevicha Bazyleva (Moskva, 22–25 aprelya 2019 g.), Chast 1, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 179, VINITI RAN, M., 2020, 16–28 | DOI | MR

[7] J. Bochnak, M. Coste, M.-F. Roy, Real algebraic geometry, Ergeb. Math. Grenzgeb. (3), 36, Springer-Verlag, Berlin, 1998, x+430 pp. | DOI | MR | Zbl

[8] R. Benedetti, J.-J. Risler, Real algebraic and semi-algebraic sets, Actualités Math., Hermann, Paris, 1990, 340 pp. | MR | Zbl

[9] S. Akbulut, H. King, Topology of real algebraic sets, Math. Sci. Res. Inst. Publ., 25, Springer-Verlag, New York, 1992, x+249 pp. | DOI | MR | Zbl

[10] D. Cox, J. Little, D. O'Shea, Ideals, varieties, and algorithms. An introduction to computational algebraic geometry and commutative algebra, Undergrad. Texts Math., Springer-Verlag, New York, 1992, xii+513 pp. | DOI | MR | Zbl

[11] M. D. Kovalev, “Geometric theory of hinged devices”, Russian Acad. Sci. Izv. Math., 44:1 (1995), 43–68 | DOI | MR | Zbl

[12] M. D. Kovalev, “Voprosy geometrii sharnirnykh ustroistv i skhem”, Vestnik MGTU. Seriya Mashinostroenie, 2001, no. 4, 33–51

[13] E. A. Gorin, “Asymptotic properties of polynomials and algebraic functions of several variables”, Russian Math. Surveys, 16:1 (1961), 93–119 | DOI | MR | Zbl

[14] D. Jordan, M. Steiner, “Configuration spaces of mechanical linkages”, Discrete Comput. Geom., 22:2 (1999), 297–315 | DOI | MR | Zbl

[15] I. R. Shafarevich, Basic algebraic geometry, v. 1, 2nd ed., Springer-Verlag, Berlin, 1994, xx+303 pp. | MR | MR | Zbl | Zbl

[16] Éd. Goursat, Cours d'analyse mathématique, v. I, 5 éd., Gauthier-Villars, Paris, 1927, 674 pp. | MR | Zbl

[17] M. D. Kovalev, “Some properties of rigidity mappings”, J. Math. Sci. (N.Y.), 149:1 (2008), 947–955 | DOI | MR | Zbl