Existence of solutions of nonlinear elliptic equations with measure data in Musielak-Orlicz spaces
Sbornik. Mathematics, Tome 213 (2022) no. 4, pp. 476-511 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A second-order quasilinear elliptic equation with a measure of special form on the right-hand side is considered. Restrictions on the structure of the equation are imposed in terms of a generalized $N$-function such that the conjugate function obeys the $\Delta_2$-condition and the corresponding Musielak-Orlicz space is not necessarily reflexive. In an arbitrary domain satisfying the segment property, the existence of an entropy solution of the Dirichlet problem is proved. It is established that this solution is renormalized. Bibliography: 29 titles.
Keywords: quasilinear elliptic equation, entropy solution, renormalized solution, unbounded domain, diffuse measure, Musielak-Orlicz space.
@article{SM_2022_213_4_a2,
     author = {A. P. Kashnikova and L. M. Kozhevnikova},
     title = {Existence of solutions of nonlinear elliptic equations with measure data in {Musielak-Orlicz} spaces},
     journal = {Sbornik. Mathematics},
     pages = {476--511},
     year = {2022},
     volume = {213},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2022_213_4_a2/}
}
TY  - JOUR
AU  - A. P. Kashnikova
AU  - L. M. Kozhevnikova
TI  - Existence of solutions of nonlinear elliptic equations with measure data in Musielak-Orlicz spaces
JO  - Sbornik. Mathematics
PY  - 2022
SP  - 476
EP  - 511
VL  - 213
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2022_213_4_a2/
LA  - en
ID  - SM_2022_213_4_a2
ER  - 
%0 Journal Article
%A A. P. Kashnikova
%A L. M. Kozhevnikova
%T Existence of solutions of nonlinear elliptic equations with measure data in Musielak-Orlicz spaces
%J Sbornik. Mathematics
%D 2022
%P 476-511
%V 213
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2022_213_4_a2/
%G en
%F SM_2022_213_4_a2
A. P. Kashnikova; L. M. Kozhevnikova. Existence of solutions of nonlinear elliptic equations with measure data in Musielak-Orlicz spaces. Sbornik. Mathematics, Tome 213 (2022) no. 4, pp. 476-511. http://geodesic.mathdoc.fr/item/SM_2022_213_4_a2/

[1] G. Dal Maso, F. Murat, L. Orsina, A. Prignet, “Renormalized solutions of elliptic equations with general measure data”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 28:4 (1999), 741–808 | MR | Zbl

[2] A. Malusa, “A new proof of the stability of renormalized solutions to elliptic equations with measure data”, Asymptot. Anal., 43:1-2 (2005), 111–129 | MR | Zbl

[3] I. Chlebicka, Measure data elliptic problems with generalized Orlicz growth, 2020, arXiv: 2008.02495

[4] I. Chlebicka, P. Nayar, “Essentially fully anisotropic Orlicz functions and uniqueness to measure data problem”, Math. Methods Appl. Sci., 2021, 1–25, Publ. online | DOI

[5] L. M. Kozhevnikova, “Renormalized solutions of elliptic equations with variable exponents and general measure data”, Sb. Math., 211:12 (2020), 1737–1776 | DOI | DOI | MR | Zbl

[6] P. Gwiazda, I. Skrzypczak, A. Zatorska-Goldstein, “Existence of renormalized solutions to elliptic equation in Musielak–Orlicz space”, J. Differential Equations, 264:1 (2018), 341–377 | DOI | MR | Zbl

[7] M. Ait Khellou, A. Benkirane, “Renormalized solution for nonlinear elliptic problems with lower order terms and $L^1$ data in Musielak–Orlicz spaces”, An. Univ. Craiova Ser. Mat. Inform., 43:2 (2016), 164–187 | MR | Zbl

[8] M. S. B. Elemine Vall, T. Ahmedatt, A. Touzani, A. Benkirane, “Existence of entropy solutions for nonlinear elliptic equations in Musielak framework with $L^1$ data”, Bol. Soc. Parana. Mat. (3), 36:1 (2018), 125–150 | DOI | MR | Zbl

[9] R. Elarabi, M. Rhoudaf, H. Sabiki, “Entropy solution for a nonlinear elliptic problem with lower order term in Musielak–Orlicz spaces”, Ric. Mat., 67:2 (2018), 549–579 | DOI | MR | Zbl

[10] M. Ait Khellou, S. M. Douiri, Y. El Hadfi, “Existence of solutions for some nonlinear elliptic equations in musielak spaces with only the log-Hölder continuity condition”, Mediterr. J. Math., 17:1 (2020), 33, 18 pp. | DOI | MR | Zbl

[11] A. Talha, A. Benkirane, “Strongly nonlinear elliptic boundary value problems in Musielak–Orlicz spaces”, Monatsh. Math., 186:4 (2018), 745–776 | DOI | MR | Zbl

[12] Ph. Benilan, L. Boccardo, Th. Gallouët, R. Gariepy, M. Pierre, J. L. Vazquez, “An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 22:2 (1995), 241–273 | MR | Zbl

[13] A. Malusa, M. M. Porzio, “Renormalized solutions to elliptic equations with measure data in unbounded domains”, Nonlinear Anal., 67:8 (2007), 2370–2389 | DOI | MR | Zbl

[14] F. Kh. Mukminov, “Uniqueness of the renormalized solution of an elliptic-parabolic problem in anisotropic Sobolev–Orlicz spaces”, Sb. Math., 208:8 (2017), 1187–1206 | DOI | DOI | MR | Zbl

[15] L. M. Kozhevnikova, “On the entropy solution to an elliptic problem in anisotropic Sobolev–Orlicz spaces”, Comput. Math. Math. Phys., 57:3 (2017), 434–452 | DOI | DOI | MR | Zbl

[16] L. M. Kozhevnikova, “Existence of entropic solutions of an elliptic problem in anisotropic Sobolev–Orlicz spaces”, J. Math. Sci. (N.Y.), 241:3 (2019), 258–284 | DOI | MR | Zbl

[17] L. M. Kozhevnikova, “On entropy solutions of anisotropic elliptic equations with variable nonlinearity indices in unbounded domains”, J. Math. Sci. (N.Y.), 253:5 (2021), 692–709 | DOI | DOI | MR | Zbl

[18] L. M. Kozhevnikova, “On solutions of anisotropic elliptic equations with variable exponent and measure data”, Complex Var. Elliptic Equ., 65:3 (2020), 333–367 | DOI | MR | Zbl

[19] L. M. Kozhevnikova, “Entropy and renormalized solutions of anisotropic elliptic equations with variable nonlinearity exponents”, Sb. Math., 210:3 (2019), 417–446 | DOI | DOI | MR | Zbl

[20] L. M. Kozhevnikova, “Equivalence of entropy and renormalized solutions of the anisotropic elliptic problem in unbounded domains with measure data”, Russian Math. (Iz. VUZ), 64:1 (2020), 25–39 | DOI | DOI | MR | Zbl

[21] M. A. Krasnosel'skiĭ, Ya. B. Rutickiĭ, Convex functions and Orlicz spaces, P. Noordhoff Ltd., Groningen, 1961, xi+249 pp. | MR | MR | Zbl | Zbl

[22] J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Math., 1034, Springer-Verlag, Berlin, 1983, iii+222 pp. | DOI | MR | Zbl

[23] I. Chlebicka, “A pocket guide to nonlinear differential equations in Musielak–Orlicz spaces”, Nonlinear Anal., 175 (2018), 1–27 | DOI | MR | Zbl

[24] A. Benkirane, M. Sidi El Vally, “An existence result for nonlinear elliptic equations in Musielak–Orlicz–Sobolev spaces”, Bull. Belg. Math. Soc. Simon Stevin, 20:1 (2013), 57–75 | DOI | MR | Zbl

[25] Y. Ahmida, I. Chlebicka, P. Gwiazda, A. Youssfi, “Gossez's approximation theorems in Musielak–Orlicz–Sobolev spaces”, J. Funct. Anal., 275:9 (2018), 2538–2571 | DOI | MR | Zbl

[26] G. I. Laptev, “Weak solutions of second-order quasilinear parabolic equations with double non-linearity”, Sb. Math., 188:9 (1997), 1343–1370 | DOI | DOI | MR | Zbl

[27] N. A. Vorob'yov, F. Kh. Mukminov, “Existence of a renormalized solution of a parabolic problem in anisotropic Sobolev–Orlicz spaces”, J. Math. Sci. (N.Y.), 258:1 (2021), 37–64 | DOI | MR | Zbl

[28] N. Dunford, J. T. Schwartz, Linear operators, v. I, Pure Appl. Math., 7, General theory, Interscience Publishers, Inc., New York; Interscience Publishers, Ltd., London, 1958, xiv+858 pp. | MR | MR | Zbl

[29] L. M. Kozhevnikova, A. P. Kashnikova, “Suschestvovanie reshenii kvazilineinykh ellipticheskikh uravnenii v prostranstvakh Muzilaka–Orlicha–Soboleva dlya neogranichennykh oblastei”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 24:4 (2020), 621–643 | DOI | Zbl