@article{SM_2022_213_4_a2,
author = {A. P. Kashnikova and L. M. Kozhevnikova},
title = {Existence of solutions of nonlinear elliptic equations with measure data in {Musielak-Orlicz} spaces},
journal = {Sbornik. Mathematics},
pages = {476--511},
year = {2022},
volume = {213},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2022_213_4_a2/}
}
TY - JOUR AU - A. P. Kashnikova AU - L. M. Kozhevnikova TI - Existence of solutions of nonlinear elliptic equations with measure data in Musielak-Orlicz spaces JO - Sbornik. Mathematics PY - 2022 SP - 476 EP - 511 VL - 213 IS - 4 UR - http://geodesic.mathdoc.fr/item/SM_2022_213_4_a2/ LA - en ID - SM_2022_213_4_a2 ER -
A. P. Kashnikova; L. M. Kozhevnikova. Existence of solutions of nonlinear elliptic equations with measure data in Musielak-Orlicz spaces. Sbornik. Mathematics, Tome 213 (2022) no. 4, pp. 476-511. http://geodesic.mathdoc.fr/item/SM_2022_213_4_a2/
[1] G. Dal Maso, F. Murat, L. Orsina, A. Prignet, “Renormalized solutions of elliptic equations with general measure data”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 28:4 (1999), 741–808 | MR | Zbl
[2] A. Malusa, “A new proof of the stability of renormalized solutions to elliptic equations with measure data”, Asymptot. Anal., 43:1-2 (2005), 111–129 | MR | Zbl
[3] I. Chlebicka, Measure data elliptic problems with generalized Orlicz growth, 2020, arXiv: 2008.02495
[4] I. Chlebicka, P. Nayar, “Essentially fully anisotropic Orlicz functions and uniqueness to measure data problem”, Math. Methods Appl. Sci., 2021, 1–25, Publ. online | DOI
[5] L. M. Kozhevnikova, “Renormalized solutions of elliptic equations with variable exponents and general measure data”, Sb. Math., 211:12 (2020), 1737–1776 | DOI | DOI | MR | Zbl
[6] P. Gwiazda, I. Skrzypczak, A. Zatorska-Goldstein, “Existence of renormalized solutions to elliptic equation in Musielak–Orlicz space”, J. Differential Equations, 264:1 (2018), 341–377 | DOI | MR | Zbl
[7] M. Ait Khellou, A. Benkirane, “Renormalized solution for nonlinear elliptic problems with lower order terms and $L^1$ data in Musielak–Orlicz spaces”, An. Univ. Craiova Ser. Mat. Inform., 43:2 (2016), 164–187 | MR | Zbl
[8] M. S. B. Elemine Vall, T. Ahmedatt, A. Touzani, A. Benkirane, “Existence of entropy solutions for nonlinear elliptic equations in Musielak framework with $L^1$ data”, Bol. Soc. Parana. Mat. (3), 36:1 (2018), 125–150 | DOI | MR | Zbl
[9] R. Elarabi, M. Rhoudaf, H. Sabiki, “Entropy solution for a nonlinear elliptic problem with lower order term in Musielak–Orlicz spaces”, Ric. Mat., 67:2 (2018), 549–579 | DOI | MR | Zbl
[10] M. Ait Khellou, S. M. Douiri, Y. El Hadfi, “Existence of solutions for some nonlinear elliptic equations in musielak spaces with only the log-Hölder continuity condition”, Mediterr. J. Math., 17:1 (2020), 33, 18 pp. | DOI | MR | Zbl
[11] A. Talha, A. Benkirane, “Strongly nonlinear elliptic boundary value problems in Musielak–Orlicz spaces”, Monatsh. Math., 186:4 (2018), 745–776 | DOI | MR | Zbl
[12] Ph. Benilan, L. Boccardo, Th. Gallouët, R. Gariepy, M. Pierre, J. L. Vazquez, “An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 22:2 (1995), 241–273 | MR | Zbl
[13] A. Malusa, M. M. Porzio, “Renormalized solutions to elliptic equations with measure data in unbounded domains”, Nonlinear Anal., 67:8 (2007), 2370–2389 | DOI | MR | Zbl
[14] F. Kh. Mukminov, “Uniqueness of the renormalized solution of an elliptic-parabolic problem in anisotropic Sobolev–Orlicz spaces”, Sb. Math., 208:8 (2017), 1187–1206 | DOI | DOI | MR | Zbl
[15] L. M. Kozhevnikova, “On the entropy solution to an elliptic problem in anisotropic Sobolev–Orlicz spaces”, Comput. Math. Math. Phys., 57:3 (2017), 434–452 | DOI | DOI | MR | Zbl
[16] L. M. Kozhevnikova, “Existence of entropic solutions of an elliptic problem in anisotropic Sobolev–Orlicz spaces”, J. Math. Sci. (N.Y.), 241:3 (2019), 258–284 | DOI | MR | Zbl
[17] L. M. Kozhevnikova, “On entropy solutions of anisotropic elliptic equations with variable nonlinearity indices in unbounded domains”, J. Math. Sci. (N.Y.), 253:5 (2021), 692–709 | DOI | DOI | MR | Zbl
[18] L. M. Kozhevnikova, “On solutions of anisotropic elliptic equations with variable exponent and measure data”, Complex Var. Elliptic Equ., 65:3 (2020), 333–367 | DOI | MR | Zbl
[19] L. M. Kozhevnikova, “Entropy and renormalized solutions of anisotropic elliptic equations with variable nonlinearity exponents”, Sb. Math., 210:3 (2019), 417–446 | DOI | DOI | MR | Zbl
[20] L. M. Kozhevnikova, “Equivalence of entropy and renormalized solutions of the anisotropic elliptic problem in unbounded domains with measure data”, Russian Math. (Iz. VUZ), 64:1 (2020), 25–39 | DOI | DOI | MR | Zbl
[21] M. A. Krasnosel'skiĭ, Ya. B. Rutickiĭ, Convex functions and Orlicz spaces, P. Noordhoff Ltd., Groningen, 1961, xi+249 pp. | MR | MR | Zbl | Zbl
[22] J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Math., 1034, Springer-Verlag, Berlin, 1983, iii+222 pp. | DOI | MR | Zbl
[23] I. Chlebicka, “A pocket guide to nonlinear differential equations in Musielak–Orlicz spaces”, Nonlinear Anal., 175 (2018), 1–27 | DOI | MR | Zbl
[24] A. Benkirane, M. Sidi El Vally, “An existence result for nonlinear elliptic equations in Musielak–Orlicz–Sobolev spaces”, Bull. Belg. Math. Soc. Simon Stevin, 20:1 (2013), 57–75 | DOI | MR | Zbl
[25] Y. Ahmida, I. Chlebicka, P. Gwiazda, A. Youssfi, “Gossez's approximation theorems in Musielak–Orlicz–Sobolev spaces”, J. Funct. Anal., 275:9 (2018), 2538–2571 | DOI | MR | Zbl
[26] G. I. Laptev, “Weak solutions of second-order quasilinear parabolic equations with double non-linearity”, Sb. Math., 188:9 (1997), 1343–1370 | DOI | DOI | MR | Zbl
[27] N. A. Vorob'yov, F. Kh. Mukminov, “Existence of a renormalized solution of a parabolic problem in anisotropic Sobolev–Orlicz spaces”, J. Math. Sci. (N.Y.), 258:1 (2021), 37–64 | DOI | MR | Zbl
[28] N. Dunford, J. T. Schwartz, Linear operators, v. I, Pure Appl. Math., 7, General theory, Interscience Publishers, Inc., New York; Interscience Publishers, Ltd., London, 1958, xiv+858 pp. | MR | MR | Zbl
[29] L. M. Kozhevnikova, A. P. Kashnikova, “Suschestvovanie reshenii kvazilineinykh ellipticheskikh uravnenii v prostranstvakh Muzilaka–Orlicha–Soboleva dlya neogranichennykh oblastei”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 24:4 (2020), 621–643 | DOI | Zbl