How many roots of a system of random Laurent polynomials are real?
Sbornik. Mathematics, Tome 213 (2022) no. 4, pp. 466-475 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We say that a zero of a Laurent polynomial that lies on the unit circle with centre $0\in\mathbb C$ is real. We also say that a Laurent polynomial that is real on this circle is real. In contrast with ordinary polynomials, it is known that for random real Laurent polynomials of increasing degree the average proportion of real roots tends to $1/\sqrt 3$ rather than to $0$. We show that this phenomenon of the asymptotically nonvanishing proportion of real roots also holds for systems of Laurent polynomials of several variables. The corresponding asymptotic formula is obtained in terms of the mixed volumes of certain convex compact sets determining the growth of the system of polynomials. Bibliography: 11 titles.
Keywords: trigonometric polynomial, proportion of real zeros, BKK theorem, mixed volume.
Mots-clés : Laurent polynomial
@article{SM_2022_213_4_a1,
     author = {B. Ya. Kazarnovskii},
     title = {How many roots of a~system of random {Laurent} polynomials are real?},
     journal = {Sbornik. Mathematics},
     pages = {466--475},
     year = {2022},
     volume = {213},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2022_213_4_a1/}
}
TY  - JOUR
AU  - B. Ya. Kazarnovskii
TI  - How many roots of a system of random Laurent polynomials are real?
JO  - Sbornik. Mathematics
PY  - 2022
SP  - 466
EP  - 475
VL  - 213
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2022_213_4_a1/
LA  - en
ID  - SM_2022_213_4_a1
ER  - 
%0 Journal Article
%A B. Ya. Kazarnovskii
%T How many roots of a system of random Laurent polynomials are real?
%J Sbornik. Mathematics
%D 2022
%P 466-475
%V 213
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2022_213_4_a1/
%G en
%F SM_2022_213_4_a1
B. Ya. Kazarnovskii. How many roots of a system of random Laurent polynomials are real?. Sbornik. Mathematics, Tome 213 (2022) no. 4, pp. 466-475. http://geodesic.mathdoc.fr/item/SM_2022_213_4_a1/

[1] M. Kac, “On the average number of real roots of a random algebraic equation”, Bull. Amer. Math. Soc., 49:4 (1943), 314–320 ; “Correction”:12, 938 | DOI | MR | Zbl | DOI | MR | Zbl

[2] A. Edelman, E. Kostlan, “How many zeros of a random polynomial are real?”, Bull. Amer. Math. Soc. (N.S.), 32:1 (1995), 1–37 ; arXiv: math/9501224 | DOI | MR | Zbl

[3] J. Angst, F. Dalmao, G. Poly, “On the real zeros of random trigonometric polynomials with dependent coefficients”, Proc. Amer. Math. Soc., 147:1 (2019), 205–214 ; arXiv: 1706.01654 | DOI | MR | Zbl

[4] P. Tchebichef, “Sur l'integration des differentielles irrationnelles”, J. Math. Pures Appl., 18 (1853), 87–111 | MR | Zbl

[5] D. Akhiezer, B. Kazarnovskii, “Average number of zeros and mixed symplectic volume of Finsler sets”, Geom. Funct. Anal., 28:6 (2018), 1517–1547 | DOI | MR | Zbl

[6] D. N. Zaporozhets, Z. Kabluchko, “Random determinants, mixed volumes of ellipsoids, and zeros of Gaussian random fields”, J. Math. Sci. (N.Y.), 199:2 (2014), 168–173 | DOI | MR | Zbl

[7] B. Ya. Kazarnovskii, “Average number of roots of systems of equations”, Funct. Anal. Appl., 54:2 (2020), 100–109 | DOI | DOI | MR | Zbl

[8] D. N. Bernshtein, “The number of roots of a system of equations”, Funct. Anal. Appl., 9:3 (1975), 183–185 | DOI | MR | Zbl

[9] V. I. Arnold, Mathematical methods of classical mechanics, Grad. Texts in Math., 60, Springer-Verlag, New York–Heidelberg, 1978, xvi+462 pp. | DOI | MR | Zbl

[10] A. D. Aleksandrov, “K teorii smeshannykh ob'emov vypuklykh tel. IV. Smeshannye diskriminanty i smeshannye ob'emy”, Matem. sb., 3(45):2 (1938), 227–251 | Zbl

[11] K. Kaveh, A. G. Khovanskii, “Newton–Okounkov bodies, semigroups of integral points, graded algebras and intersection theory”, Ann. of Math. (2), 176:2 (2012), 925–978 | DOI | MR | Zbl