Mots-clés : Laurent polynomial
@article{SM_2022_213_4_a1,
author = {B. Ya. Kazarnovskii},
title = {How many roots of a~system of random {Laurent} polynomials are real?},
journal = {Sbornik. Mathematics},
pages = {466--475},
year = {2022},
volume = {213},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2022_213_4_a1/}
}
B. Ya. Kazarnovskii. How many roots of a system of random Laurent polynomials are real?. Sbornik. Mathematics, Tome 213 (2022) no. 4, pp. 466-475. http://geodesic.mathdoc.fr/item/SM_2022_213_4_a1/
[1] M. Kac, “On the average number of real roots of a random algebraic equation”, Bull. Amer. Math. Soc., 49:4 (1943), 314–320 ; “Correction”:12, 938 | DOI | MR | Zbl | DOI | MR | Zbl
[2] A. Edelman, E. Kostlan, “How many zeros of a random polynomial are real?”, Bull. Amer. Math. Soc. (N.S.), 32:1 (1995), 1–37 ; arXiv: math/9501224 | DOI | MR | Zbl
[3] J. Angst, F. Dalmao, G. Poly, “On the real zeros of random trigonometric polynomials with dependent coefficients”, Proc. Amer. Math. Soc., 147:1 (2019), 205–214 ; arXiv: 1706.01654 | DOI | MR | Zbl
[4] P. Tchebichef, “Sur l'integration des differentielles irrationnelles”, J. Math. Pures Appl., 18 (1853), 87–111 | MR | Zbl
[5] D. Akhiezer, B. Kazarnovskii, “Average number of zeros and mixed symplectic volume of Finsler sets”, Geom. Funct. Anal., 28:6 (2018), 1517–1547 | DOI | MR | Zbl
[6] D. N. Zaporozhets, Z. Kabluchko, “Random determinants, mixed volumes of ellipsoids, and zeros of Gaussian random fields”, J. Math. Sci. (N.Y.), 199:2 (2014), 168–173 | DOI | MR | Zbl
[7] B. Ya. Kazarnovskii, “Average number of roots of systems of equations”, Funct. Anal. Appl., 54:2 (2020), 100–109 | DOI | DOI | MR | Zbl
[8] D. N. Bernshtein, “The number of roots of a system of equations”, Funct. Anal. Appl., 9:3 (1975), 183–185 | DOI | MR | Zbl
[9] V. I. Arnold, Mathematical methods of classical mechanics, Grad. Texts in Math., 60, Springer-Verlag, New York–Heidelberg, 1978, xvi+462 pp. | DOI | MR | Zbl
[10] A. D. Aleksandrov, “K teorii smeshannykh ob'emov vypuklykh tel. IV. Smeshannye diskriminanty i smeshannye ob'emy”, Matem. sb., 3(45):2 (1938), 227–251 | Zbl
[11] K. Kaveh, A. G. Khovanskii, “Newton–Okounkov bodies, semigroups of integral points, graded algebras and intersection theory”, Ann. of Math. (2), 176:2 (2012), 925–978 | DOI | MR | Zbl