Realization of Fomenko-Zieschang invariants in closed symplectic manifolds with contact singularities
Sbornik. Mathematics, Tome 213 (2022) no. 4, pp. 443-465 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The topological bifurcations of Liouville foliations on invariant $3$-manifolds that are induced by attaching toric $\Theta$-handles are investigated. It is shown that each marked molecule (Fomenko-Zieschang invariant) can be realized on an invariant submanifold of a closed symplectic manifold with contact singularities which is obtained by attaching toric $\Theta$-handles sequentially to a set of symplectic manifolds, while these latter have the structures of locally trivial fibrations over $S^1$ associated with atoms. Bibliography: 10 titles.
Keywords: contact singularity, marked molecule, theta handle.
Mots-clés : Fomenko-Zieschang invariant
@article{SM_2022_213_4_a0,
     author = {D. B. Zot'ev and V. I. Sidel'nikov},
     title = {Realization of {Fomenko-Zieschang} invariants in closed symplectic manifolds with contact singularities},
     journal = {Sbornik. Mathematics},
     pages = {443--465},
     year = {2022},
     volume = {213},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2022_213_4_a0/}
}
TY  - JOUR
AU  - D. B. Zot'ev
AU  - V. I. Sidel'nikov
TI  - Realization of Fomenko-Zieschang invariants in closed symplectic manifolds with contact singularities
JO  - Sbornik. Mathematics
PY  - 2022
SP  - 443
EP  - 465
VL  - 213
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2022_213_4_a0/
LA  - en
ID  - SM_2022_213_4_a0
ER  - 
%0 Journal Article
%A D. B. Zot'ev
%A V. I. Sidel'nikov
%T Realization of Fomenko-Zieschang invariants in closed symplectic manifolds with contact singularities
%J Sbornik. Mathematics
%D 2022
%P 443-465
%V 213
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2022_213_4_a0/
%G en
%F SM_2022_213_4_a0
D. B. Zot'ev; V. I. Sidel'nikov. Realization of Fomenko-Zieschang invariants in closed symplectic manifolds with contact singularities. Sbornik. Mathematics, Tome 213 (2022) no. 4, pp. 443-465. http://geodesic.mathdoc.fr/item/SM_2022_213_4_a0/

[1] A. V. Bolsinov, A. T. Fomenko, Integrable Hamiltonian systems. Geometry, topology, classification, Chapman Hall/CRC, Boca Raton, FL, 2004, xvi+730 pp. | DOI | MR | MR | Zbl | Zbl

[2] D. B. Zotev, Topology of integrable systems: the Fomenko theory, Rev. Math. Math. Phys., 14/1, Camb. Sci. Publ., Cambridge, 2010, vi+158 pp. | MR | Zbl

[3] D. B. Zotev, “Phase topology of Appelrot class I of a Kowalewski top in a magnetic field”, J. Math. Sci. (N.Y.), 149:1 (2008), 922–946 | DOI | MR | Zbl

[4] D. B. Zot'ev, “Fomenko–Zieschang invariants of integrable systems with symplectic singularities”, Russian Math. (Iz. VUZ), 56:1 (2012), 19–26 | DOI | MR | Zbl

[5] D. B. Zot'ev, “Kostant prequantization of symplectic manifolds with contact singularities”, Math. Notes, 105:6 (2019), 846–863 | DOI | DOI | MR | Zbl

[6] D. B. Zot'ev, “Symplectic geometry of manifolds with almost nowhere vanishing closed 2-form”, Math. Notes, 76:1 (2004), 62–72 | DOI | DOI | MR | Zbl

[7] D. B. Zot'ev, “Contact degeneracies of closed 2-forms”, Sb. Math., 198:4 (2007), 491–520 | DOI | DOI | MR | Zbl

[8] A. T. Fomenko, “Topological invariants of Liouville integrable Hamiltonian systems”, Funct. Anal. Appl., 22:4 (1988), 286–296 | DOI | MR | Zbl

[9] A. T. Fomenko, Kh. Tsishang, “A topological invariant and a criterion for the equivalence of integrable Hamiltonian systems with two degrees of freedom”, Math. USSR-Izv., 36:3 (1991), 567–596 | DOI | MR | Zbl

[10] A. T. Fomenko, D. B. Fuks, Kurs gomotopicheskoi topologii, Nauka, M., 1989, 496 pp. | MR | Zbl