On the problem of periodicity of continued fraction expansions of $\sqrt{f}$ for cubic polynomials $f$ over algebraic number fields
Sbornik. Mathematics, Tome 213 (2022) no. 3, pp. 412-442 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We obtain a complete description of the fields $\mathbb K$ that are extensions of $\mathbb Q$ of degree at most $3$ and the cubic polynomials $f \in\mathbb K[x]$ such that the expansion of $\sqrt{f}$ into a continued fraction in the field of formal power series $\mathbb K((x))$ is periodic. We prove a finiteness theorem for cubic polynomials $f \in\mathbb K[x]$ with a periodic expansion of $\sqrt{f}$ for extensions of $\mathbb Q$ of degree at most $6$. We obtain a description of the periodic elements $\sqrt{f}$ for the cubic polynomials $f(x)$ defining elliptic curves with points of order $3 \le N\le 42$, $N \ne 37, 41$. Bibliography: 19 titles.
Keywords: elliptic field, $S$-units, continued fractions, periodicity
Mots-clés : torsion points.
@article{SM_2022_213_3_a6,
     author = {V. P. Platonov and V. S. Zhgoon and M. M. Petrunin},
     title = {On the problem of periodicity of continued fraction expansions of $\sqrt{f}$ for cubic polynomials~$f$ over algebraic number fields},
     journal = {Sbornik. Mathematics},
     pages = {412--442},
     year = {2022},
     volume = {213},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2022_213_3_a6/}
}
TY  - JOUR
AU  - V. P. Platonov
AU  - V. S. Zhgoon
AU  - M. M. Petrunin
TI  - On the problem of periodicity of continued fraction expansions of $\sqrt{f}$ for cubic polynomials $f$ over algebraic number fields
JO  - Sbornik. Mathematics
PY  - 2022
SP  - 412
EP  - 442
VL  - 213
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2022_213_3_a6/
LA  - en
ID  - SM_2022_213_3_a6
ER  - 
%0 Journal Article
%A V. P. Platonov
%A V. S. Zhgoon
%A M. M. Petrunin
%T On the problem of periodicity of continued fraction expansions of $\sqrt{f}$ for cubic polynomials $f$ over algebraic number fields
%J Sbornik. Mathematics
%D 2022
%P 412-442
%V 213
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2022_213_3_a6/
%G en
%F SM_2022_213_3_a6
V. P. Platonov; V. S. Zhgoon; M. M. Petrunin. On the problem of periodicity of continued fraction expansions of $\sqrt{f}$ for cubic polynomials $f$ over algebraic number fields. Sbornik. Mathematics, Tome 213 (2022) no. 3, pp. 412-442. http://geodesic.mathdoc.fr/item/SM_2022_213_3_a6/

[1] V. P. Platonov, “Number-theoretic properties of hyperelliptic fields and the torsion problem in Jacobians of hyperelliptic curves over the rational number field”, Russian Math. Surveys, 69:1 (2014), 1–34 | DOI | DOI | MR | Zbl

[2] V. P. Platonov, V. S. Zhgoon, G. V. Fedorov, “Continued rational fractions in hyperelliptic fields and the Mumford representation”, Dokl. Math., 94:3 (2016), 692–696 | DOI | DOI | MR | Zbl

[3] V. P. Platonov, M. M. Petrunin, “Groups of $S$-units and the problem of periodicity of continued fractions in hyperelliptic fields”, Proc. Steklov Inst. Math., 302 (2018), 336–357 | DOI | DOI | MR | Zbl

[4] V. P. Platonov, G. V. Fedorov, “On the problem of periodicity of continued fractions in hyperelliptic fields”, Sb. Math., 209:4 (2018), 519–559 | DOI | DOI | MR | Zbl

[5] B. Mazur, “Rational points on modular curves”, Modular functions of one variable V (Univ. Bonn, Bonn, 1976), Lecture Notes in Math., 601, Springer, Berlin, 1977, 107–148 | DOI | MR | Zbl

[6] D. S. Kubert, “Universal bounds on the torsion of elliptic curves”, Proc. London Math. Soc. (3), 33:2 (1976), 193–237 | DOI | MR | Zbl

[7] M. A. Kenku, F. Momose, “Torsion points on elliptic curves defined over quadratic fields”, Nagoya Math. J., 109 (1988), 125–149 | DOI | MR | Zbl

[8] M. Derickx, A. Etropolski, M. van Hoeij, J. S. Morrow, D. Zureick-Brown, “Sporadic cubic torsion”, Algebra Number Theory, 15:7 (2021), 1837–1864 ; arXiv: 2007.13929 | DOI | MR | Zbl

[9] P. Parent, “Bornes effectives pour la torsion des courbes elliptiques sur les corps de nombres”, J. Reine Angew. Math., 1999:506 (1999), 85–116 | DOI | MR | Zbl

[10] V. P. Platonov, V. S. Zhgoon, G. V. Fedorov, “On the periodicity of continued fractions in hyperelliptic fields over quadratic constant field”, Dokl. Math., 98:2 (2018), 430–434 | DOI | DOI | Zbl

[11] V. P. Platonov, V. S. Zhgoon, M. M. Petrunin, Yu. N. Shteinikov, “On the finiteness of hyperelliptic fields with special properties and periodic expansion of $\sqrt f$”, Dokl. Math., 98:3 (2018), 641–645 | DOI | DOI | Zbl

[12] V. P. Platonov, M. M. Petrunin, Yu. N. Shteinikov, “On the finiteness of the number of elliptic fields with given degrees of $S$-units and periodic expansion of $\sqrt f$”, Dokl. Math., 100:2 (2019), 440–444 | DOI | DOI | Zbl

[13] V. P. Platonov, M. M. Petrunin, V. S. Zhgoon, “On the problem of periodicity of continued fraction expansions of $\sqrt{f}$ for cubic polynomials over number fields”, Dokl. Math., 102:1 (2020), 288–292 | DOI | DOI | Zbl

[14] V. P. Platonov, M. M. Petrunin, “On the finiteness of the number of expansions into a continued fraction of $\sqrt{f}$ for cubic polynomials over algebraic number fields”, Dokl. Math., 102:3 (2020), 487–492 | DOI | DOI | Zbl

[15] V. P. Platonov, M. M. Petrunin, “$S$-units in hyperelliptic fields and periodicity of continued fractions”, Dokl. Math., 94:2 (2016), 532–537 | DOI | DOI | MR | Zbl

[16] A. V. Sutherland, “Constructing elliptic curves over finite fields with prescribed torsion”, Math. Comp., 81:278 (2012), 1131–1147 | DOI | MR | Zbl

[17] Daeyeol Jeon, Chang Heon Kim, Euisung Park, “On the torsion of elliptic curves over quartic number fields”, J. London Math. Soc. (2), 74:1 (2006), 1–12 | DOI | MR | Zbl

[18] M. Derickx, A. V. Sutherland, “Torsion subgroups of elliptic curves over quintic and sextic number fields”, Proc. Amer. Math. Soc., 145:10 (2017), 4233–4245 | DOI | MR | Zbl

[19] Daeyeol Jeon, Chang Heon Kim, A. Schweizer, “On the torsion of elliptic curves over cubic number fields”, Acta Arith., 113:3 (2004), 291–301 | DOI | MR | Zbl