Optimal recovery in weighted spaces with homogeneous weights
Sbornik. Mathematics, Tome 213 (2022) no. 3, pp. 385-411

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper concerns problems of the recovery of operators from noisy information in weighted $L_q$-spaces with homogeneous weights. A number of general theorems are proved and applied to problems of the recovery of differential operators from a noisy Fourier transform. In particular, optimal methods are obtained for the recovery of powers of the Laplace operator from a noisy Fourier transform in the $L_p$-metric. Bibliography: 30 titles.
Keywords: optimal recovery, linear operator, Carlson's inequality.
Mots-clés : Fourier transform
@article{SM_2022_213_3_a5,
     author = {K. Yu. Osipenko},
     title = {Optimal recovery in weighted spaces with homogeneous weights},
     journal = {Sbornik. Mathematics},
     pages = {385--411},
     publisher = {mathdoc},
     volume = {213},
     number = {3},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2022_213_3_a5/}
}
TY  - JOUR
AU  - K. Yu. Osipenko
TI  - Optimal recovery in weighted spaces with homogeneous weights
JO  - Sbornik. Mathematics
PY  - 2022
SP  - 385
EP  - 411
VL  - 213
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2022_213_3_a5/
LA  - en
ID  - SM_2022_213_3_a5
ER  - 
%0 Journal Article
%A K. Yu. Osipenko
%T Optimal recovery in weighted spaces with homogeneous weights
%J Sbornik. Mathematics
%D 2022
%P 385-411
%V 213
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2022_213_3_a5/
%G en
%F SM_2022_213_3_a5
K. Yu. Osipenko. Optimal recovery in weighted spaces with homogeneous weights. Sbornik. Mathematics, Tome 213 (2022) no. 3, pp. 385-411. http://geodesic.mathdoc.fr/item/SM_2022_213_3_a5/