Optimal recovery in weighted spaces with homogeneous weights
Sbornik. Mathematics, Tome 213 (2022) no. 3, pp. 385-411 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper concerns problems of the recovery of operators from noisy information in weighted $L_q$-spaces with homogeneous weights. A number of general theorems are proved and applied to problems of the recovery of differential operators from a noisy Fourier transform. In particular, optimal methods are obtained for the recovery of powers of the Laplace operator from a noisy Fourier transform in the $L_p$-metric. Bibliography: 30 titles.
Keywords: optimal recovery, linear operator, Carlson's inequality.
Mots-clés : Fourier transform
@article{SM_2022_213_3_a5,
     author = {K. Yu. Osipenko},
     title = {Optimal recovery in weighted spaces with homogeneous weights},
     journal = {Sbornik. Mathematics},
     pages = {385--411},
     year = {2022},
     volume = {213},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2022_213_3_a5/}
}
TY  - JOUR
AU  - K. Yu. Osipenko
TI  - Optimal recovery in weighted spaces with homogeneous weights
JO  - Sbornik. Mathematics
PY  - 2022
SP  - 385
EP  - 411
VL  - 213
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2022_213_3_a5/
LA  - en
ID  - SM_2022_213_3_a5
ER  - 
%0 Journal Article
%A K. Yu. Osipenko
%T Optimal recovery in weighted spaces with homogeneous weights
%J Sbornik. Mathematics
%D 2022
%P 385-411
%V 213
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2022_213_3_a5/
%G en
%F SM_2022_213_3_a5
K. Yu. Osipenko. Optimal recovery in weighted spaces with homogeneous weights. Sbornik. Mathematics, Tome 213 (2022) no. 3, pp. 385-411. http://geodesic.mathdoc.fr/item/SM_2022_213_3_a5/

[1] S. M. Nikolskii, “K voprosu ob otsenkakh priblizhenii kvadraturnymi formulami”, UMN, 5:2(36) (1950), 165–177 | MR | Zbl

[2] S. A. Smolyak, Ob optimalnom vosstanovlenii funktsii i funktsionalov ot nikh, Diss. ... kand. fiz.-matem. nauk, MGU, M., 1965

[3] A. G. Marchuk, K. Yu. Osipenko, “Best approximation of functions specified with an error at a finite number of points”, Math. Notes, 17:3 (1975), 207–212 | DOI | MR | Zbl

[4] C. A. Micchelli, T. J. Rivlin, “A survey of optimal recovery”, Optimal estimation in approximation theory (Freudenstadt, 1976), Plenum, New York, 1977, 1–54 | DOI | MR | Zbl

[5] R. Scharlach, “Optimal recovery by linear functionals”, J. Approx. Theory, 44:2 (1985), 167–172 | DOI | MR | Zbl

[6] G. G. Magaril-Il'yaev, Chan Tkhe Le, “On the problem of optimal recovery of functionals”, Russian Math. Surveys, 42:2 (1987), 289–290 | DOI | MR | Zbl

[7] V. V. Arestov, “Optimal recovery of operators and related problems”, Proc. Steklov Inst. Math., 189:4 (1990), 1–20 | MR | Zbl

[8] G. G. Magaril-Il'yaev, K. Yu. Osipenko, “Optimal recovery of functionals based on inaccurate data”, Math. Notes, 50:6 (1991), 1274–1279 | DOI | MR | Zbl

[9] A. A. Melkman, C. A. Micchelli, “Optimal estimation of linear operators in Hilbert spaces from inaccurate data”, SIAM J. Numer. Anal., 16:1 (1979), 87–105 | DOI | MR | Zbl

[10] L. V. Taikov, “Kolmogorov-type inequalities and the best formulas for numerical differentiation”, Math. Notes, 4:2 (1968), 631–634 | DOI | MR | Zbl

[11] K. Yu. Osipenko, “Optimal recovery of operators and multidimensional Carlson type inequalities”, J. Complexity, 32:1 (2016), 53–73 | DOI | MR | Zbl

[12] V. I. Levin, “Tochnye konstanty v neravenstvakh tipa Karlsona”, Dokl. AN CCCP, 59:4 (1948), 635–638 | MR | Zbl

[13] V. V. Arestov, “Approximation of linear operators and related extremal problems”, Proc. Steklov Inst. Math., 138 (1977), 31–44 | MR | Zbl

[14] V. V. Arestov, “Approximation of unbounded operators by bounded operators and related extremal problems”, Russian Math. Surveys, 51:6 (1996), 1093–1126 | DOI | DOI | MR | Zbl

[15] V. V. Arestov, “On the best approximation of the differentiation operator”, Ural Math. J., 1:1 (2015), 20–29 | DOI | Zbl

[16] V. V. Arestov, “Best uniform approximation of the differentiation operator by operators bounded in the space $L_2$”, Proc. Steklov Inst. Math., 308, Suppl. 1 (2020), 9–30 | DOI | DOI | MR | Zbl

[17] V. V. Arestov, “Best approximation of a differentiation operator on the set of smooth functions with exactly or approximately given Fourier transform”, Mathematical optimization theory and operations research (MOTOR 2019), Lecture Notes in Comput. Sci., 11548, Springer, Cham, 2019, 434–448 | DOI | MR | Zbl

[18] V. Arestov, “Uniform approximation of differentiation operators by bounded linear operators in the space $L_r$”, Anal. Math., 46:3 (2020), 425–445 | DOI | MR | Zbl

[19] O. A. Timoshin, “Best approximation of the operator of second mixed derivative in the metrics of $L$ and $C$ on the plane”, Math. Notes, 36:3 (1984), 683–686 | DOI | MR | Zbl

[20] V. G. Timofeev, “Landau inequality for function of several variables”, Math. Notes, 37:5 (1985), 369–377 | DOI | MR | Zbl

[21] K. Yu. Osipenko, “Optimal recovery of linear operators in non-Euclidean metrics”, Sb. Math., 205:10 (2014), 1442–1472 | DOI | DOI | MR | Zbl

[22] S. Barza, V. Burenkov, J. Pečarić, L.-E. Persson, “Sharp multidimensional multiplicative inequalities for weighted $L_p$ spaces with homogeneous weights”, Math. Inequal. Appl., 1:1 (1998), 53–67 | DOI | MR | Zbl

[23] G. G. Magaril-Il'yaev, E. O. Sivkova, “Best recovery of the Laplace operator of a function from incomplete spectral data”, Sb. Math., 203:4 (2012), 569–580 | DOI | DOI | MR | Zbl

[24] E. O. Sivkova, “Ob optimalnom vosstanovlenii laplasiana funktsii po ee netochno zadannomu preobrazovaniyu Fure”, Vladikavk. matem. zhurn., 14:4 (2012), 63–72 | MR | Zbl

[25] E. O. Sivkova, “Best recovery of the Laplace operator of a function and sharp inequalities”, J. Math. Sci. (N.Y.), 209:1 (2015), 130–137 | DOI | MR | Zbl

[26] G. G. Magaril-Il'yaev, K. Yu. Osipenko, “How best to recover a function from its inaccurately given spectrum?”, Math. Notes, 92:1 (2012), 51–58 | DOI | DOI | MR | Zbl

[27] G. G. Magaril-Ilyaev, K. Yu. Osipenko, “Optimalnoe vosstanovlenie proizvodnykh na sobolevskikh klassakh”, Vladikavk. matem. zhurn., 5:1 (2003), 39–47 | MR | Zbl

[28] G. G. Magaril-Il'yaev, K. Yu. Osipenko, “On the best methods for recovering derivatives in Sobolev classes”, Izv. Math., 78:6 (2014), 1138–1157 | DOI | DOI | MR | Zbl

[29] G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, Cambridge Univ. Press, Cambridge, 1934, xii+314 pp. | MR | MR | Zbl

[30] G. G. Magaril-Il'yaev, K. Yu. Osipenko, “Optimal recovery of values of functions and their derivatives from inaccurate data on the Fourier transform”, Sb. Math., 195:10 (2004), 1461–1476 | DOI | DOI | MR | Zbl