Optimal recovery in weighted spaces with homogeneous weights
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 213 (2022) no. 3, pp. 385-411
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The paper concerns problems of the recovery of operators from noisy information in weighted $L_q$-spaces with homogeneous weights. A number of general theorems are proved and applied to problems of the recovery of differential operators from a noisy Fourier transform. In particular, optimal methods are obtained for the recovery of powers of the Laplace operator from a noisy Fourier transform in the $L_p$-metric.
Bibliography: 30 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
optimal recovery, linear operator, Carlson's inequality.
Mots-clés : Fourier transform
                    
                  
                
                
                Mots-clés : Fourier transform
@article{SM_2022_213_3_a5,
     author = {K. Yu. Osipenko},
     title = {Optimal recovery in weighted spaces with homogeneous weights},
     journal = {Sbornik. Mathematics},
     pages = {385--411},
     publisher = {mathdoc},
     volume = {213},
     number = {3},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2022_213_3_a5/}
}
                      
                      
                    K. Yu. Osipenko. Optimal recovery in weighted spaces with homogeneous weights. Sbornik. Mathematics, Tome 213 (2022) no. 3, pp. 385-411. http://geodesic.mathdoc.fr/item/SM_2022_213_3_a5/
