Bifurcations changing the homotopy type of the closure of an invariant saddle manifold of a surface diffeomorphism
Sbornik. Mathematics, Tome 213 (2022) no. 3, pp. 357-384 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is well known from the homotopy theory of surfaces that an ambient isotopy does not change the homotopy type of a closed curve. Using the language of dynamical systems, this means that an arc in the space of diffeomorphisms that joins two isotopic diffeomorphisms with invariant closed curves in distinct homotopy classes must go through bifurcations. A scenario is described which changes the homotopy type of the closure of the invariant manifold of a saddle point of a polar diffeomorphism of a 2-torus to any prescribed homotopically nontrivial type. The arc constructed in the process is stable and does not change the topological conjugacy class of the original diffeomorphism. The ideas that are proposed here for constructing such an arc for a 2-torus can naturally be generalized to surfaces of greater genus. Bibliography: 32 titles.
Keywords: saddle-node bifurcation, polar diffeomorphisms.
Mots-clés : stable arc
@article{SM_2022_213_3_a4,
     author = {E. V. Nozdrinova and O. V. Pochinka},
     title = {Bifurcations changing the homotopy type of the closure of an invariant saddle manifold of a~surface diffeomorphism},
     journal = {Sbornik. Mathematics},
     pages = {357--384},
     year = {2022},
     volume = {213},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2022_213_3_a4/}
}
TY  - JOUR
AU  - E. V. Nozdrinova
AU  - O. V. Pochinka
TI  - Bifurcations changing the homotopy type of the closure of an invariant saddle manifold of a surface diffeomorphism
JO  - Sbornik. Mathematics
PY  - 2022
SP  - 357
EP  - 384
VL  - 213
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2022_213_3_a4/
LA  - en
ID  - SM_2022_213_3_a4
ER  - 
%0 Journal Article
%A E. V. Nozdrinova
%A O. V. Pochinka
%T Bifurcations changing the homotopy type of the closure of an invariant saddle manifold of a surface diffeomorphism
%J Sbornik. Mathematics
%D 2022
%P 357-384
%V 213
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2022_213_3_a4/
%G en
%F SM_2022_213_3_a4
E. V. Nozdrinova; O. V. Pochinka. Bifurcations changing the homotopy type of the closure of an invariant saddle manifold of a surface diffeomorphism. Sbornik. Mathematics, Tome 213 (2022) no. 3, pp. 357-384. http://geodesic.mathdoc.fr/item/SM_2022_213_3_a4/

[1] V. S. Afraĭmovich, L. P. Shil'nikov, “On some global bifurcations connected with the disappearance of a fixed point of saddle-node type”, Soviet Math. Dokl., 15:6 (1974), 1761–1765 | MR | Zbl

[2] V. S. Afraĭmovich, L. P. Shil'nikov, “On small periodic perturbations of autonomous systems”, Soviet Math. Dokl., 15 (1974), 206–211 | MR | Zbl

[3] A. Banyaga, “On the structure of the group of equivariant diffeomorphisms”, Topology, 16:3 (1977), 279–283 | DOI | MR | Zbl

[4] P. R. Blanchard, “Invariants of the NPT isotopy classes of Morse–Smale diffeomorphisms of surfaces”, Duke Math. J., 47:1 (1980), 33–46 | DOI | MR | Zbl

[5] A. N. Bezdenezhnykh, V. Z. Grines, “Dynamical properties and topological classification of gradient-like diffeomorphisms on two-dimensional manifolds. I”, Selecta Math. Soviet., 11:1 (1992), 1–11 | MR | MR | Zbl

[6] C. Bonatti, V. Z. Grines, V. S. Medvedev, O. V. Pochinka, “Bifurcations of Morse–Smale diffeomorphisms with wildly embedded separatrices”, Proc. Steklov Inst. Math., 256:1 (2007), 47–61 | DOI | MR | Zbl

[7] V. Z. Grines, O. V. Pochinka, “On the simple isotopy class of a source-sink diffeomorphism on the $3$-sphere”, Math. Notes, 94:6 (2013), 862–875 | DOI | DOI | MR | Zbl

[8] G. Fleitas, “Replacing tangencies by saddle-nodes”, Bol. Soc. Brasil. Mat., 8:1 (1977), 47–51 | DOI | MR | Zbl

[9] J. Franks, “Necessary conditions for stability of diffeomorphisms”, Trans. Amer. Math. Soc., 158:2 (1971), 301–308 | DOI | MR | Zbl

[10] I. M. Gel'fand, Lectures on linear algebra, Interscience Tracts in Pure and Applied Mathematics, 9, Interscience Publishers, New York–London, 1961, ix+185 pp. | MR | MR | Zbl | Zbl

[11] V. Z. Grines, S. Kh. Kapkaeva, O. V. Pochinka, “A three-colour graph as a complete topological invariant for gradient-like diffeomorphisms of surfaces”, Sb. Math., 205:10 (2014), 1387–1412 | DOI | DOI | MR | Zbl

[12] V. Z. Grines, E. V. Zhuzhoma, V. S. Medvedev, O. V. Pochinka, “Global attractor and repeller of Morse–Smale diffeomorphisms”, Proc. Steklov Inst. Math., 271 (2010), 103–124 | DOI | MR | Zbl

[13] V. Z. Grines, T. V. Medvedev, O. V. Pochinka, Dynamical systems on 2- and 3-manifolds, Dev. Math., 46, Springer, Cham, 2016, xxvi+295 pp. | DOI | MR | Zbl

[14] M. W. Hirsch, Differential topology, Grad. Texts in Math., 33, Springer-Verlag, New York–Heidelberg, 1976, x+221 pp. | DOI | MR | MR | Zbl | Zbl

[15] M. W. Hirsch, C. C. Pugh, M. Shub, Invariant manifolds, Lecture Notes in Math., 583, Springer-Verlag, Berlin–New York, 1977, ii+149 pp. | DOI | MR | Zbl

[16] V. I. Luk'yanov, L. P. Shil'nikov, “On some bifurcations of dynamical systems with homoclinic structures”, Soviet Math. Dokl., 19:6 (1978), 1314–1318 | MR | Zbl

[17] S. Matsumoto, “There are two isotopic Morse–Smale diffeomorphisms which cannot be joined by simple arcs”, Invent. Math., 51:1 (1979), 1–7 | DOI | MR | Zbl

[18] J. Milnor, Lectures on the $h$-cobordism theorem, Princeton Univ. Press, Princeton, NJ, 1965, v+116 pp. | DOI | MR | Zbl

[19] J. W. Milnor, Topology from the differentiable viewpoint, The Univ. Press of Virginia, Charlottesville, VA, 1965, ix+65 pp. | MR | MR | Zbl | Zbl

[20] J. Milnor, Morse theory, Based on lecture notes by M. Spivak and R. Wells, Ann. of Math. Stud., 51, Princeton Univ. Press, Princeton, NJ, 1963, vi+153 pp. | DOI | MR | MR | Zbl

[21] J. Munkres, “Obstructions to the smoothing of piecewise-differentiable homeomorphisms”, Ann. of Math. (2), 72:3 (1960), 521–554 | DOI | MR | Zbl

[22] S. Newhouse, J. Palis, F. Takens, “Stable arcs of diffeomorphisms”, Bull. Amer. Math. Soc., 82:3 (1976), 499–502 | DOI | MR | Zbl

[23] S. Newhouse, J. Palis, F. Takens, “Bifurcations and stability of families of diffeomorphisms”, Inst. Hautes Études Sci. Publ. Math., 57 (1983), 5–71 | DOI | MR | Zbl

[24] S. Newhouse, M. M. Peixoto, “There is a simple arc joining any two Morse–Smale flows”, Trois études en dynamique qualitative, Astérisque, 31, Soc. Math. France, Paris, 1976, 15–41 | MR | Zbl

[25] E. V. Nozdrinova, “Rotation number as a complete topological invariant of a simple isotopic class of rough transformations of a circle”, Nelineinaya dinam., 14:4 (2018), 543–551 | DOI | MR | Zbl

[26] E. V. Nozdrinova, O. V. Pochinka, “On the existence of a smooth arc without bifurcations joining source-sink diffeomorphisms on the 2-sphere”, J. Phys. Conf. Ser., 990 (2018), 012010, 7 pp. | DOI | MR

[27] E. Nozdrinova, O. Pochinka, “Solution of the 33rd Palis–Pugh problem for gradient-like diffeomorphisms of a two-dimensional sphere”, Discrete Contin. Dyn. Syst., 41:3 (2021), 1101–1131 | DOI | MR | Zbl

[28] J. Palis, Jr., W. de Melo, Geometric theory of dynamical systems. An introduction, Springer-Verlag, New York–Berlin, 1982, xii+198 pp. | DOI | MR | MR | Zbl

[29] J. Palis, C. C. Pugh, “Fifty problems in dynamical systems”, Dynamical systems – Warwick 1974, Proc. Sympos. Appl. Topology and Dynamical Systems, presented to E. C. Zeeman on his fiftieth birthday (Univ. Warwick, Coventry, 1973/1974), Lecture Notes in Math., 468, Springer, Berlin, 1975, 345–353 | DOI | MR | Zbl

[30] D. Pixton, “Wild unstable manifolds”, Topology, 16:2 (1977), 167–172 | DOI | MR | Zbl

[31] D. Rolfsen, Knots and links, Math. Lecture Ser., 7, Publish or Perish, Inc., Berkeley, CA, 1976, ix+439 pp. | MR | Zbl

[32] S. Smale, “Diffeomorphisms of the 2-sphere”, Proc. Amer. Math. Soc., 10 (1959), 621–626 | DOI | MR | Zbl