Lyapunov instability of stationary flows of a polymeric fluid in a channel with perforated walls
Sbornik. Mathematics, Tome 213 (2022) no. 3, pp. 283-299 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The rheological Pokrovskii-Vinogradov model for flows of solutions or melts of an incompressible viscoelastic polymeric medium is studied in the case of flows in an infinite planar channel with perforated walls. The linear Lyapunov instability is proved for the base solution with constant flow rate in the class of perturbations periodic in the variable varying along the channel wall. Bibliography: 14 titles.
Keywords: incompressible viscoelastic polymeric medium, rheological relation, infinite planar channel with perforated walls, linear Lyapunov instability.
Mots-clés : base solution
@article{SM_2022_213_3_a0,
     author = {A. M. Blokhin and D. L. Tkachev},
     title = {Lyapunov instability of stationary flows of a~polymeric fluid in a~channel with perforated walls},
     journal = {Sbornik. Mathematics},
     pages = {283--299},
     year = {2022},
     volume = {213},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2022_213_3_a0/}
}
TY  - JOUR
AU  - A. M. Blokhin
AU  - D. L. Tkachev
TI  - Lyapunov instability of stationary flows of a polymeric fluid in a channel with perforated walls
JO  - Sbornik. Mathematics
PY  - 2022
SP  - 283
EP  - 299
VL  - 213
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2022_213_3_a0/
LA  - en
ID  - SM_2022_213_3_a0
ER  - 
%0 Journal Article
%A A. M. Blokhin
%A D. L. Tkachev
%T Lyapunov instability of stationary flows of a polymeric fluid in a channel with perforated walls
%J Sbornik. Mathematics
%D 2022
%P 283-299
%V 213
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2022_213_3_a0/
%G en
%F SM_2022_213_3_a0
A. M. Blokhin; D. L. Tkachev. Lyapunov instability of stationary flows of a polymeric fluid in a channel with perforated walls. Sbornik. Mathematics, Tome 213 (2022) no. 3, pp. 283-299. http://geodesic.mathdoc.fr/item/SM_2022_213_3_a0/

[1] G. V. Pyshnograi, V. N. Pokrovskii, Yu. G. Yanovskii, Yu. N. Karnet, I. F. Obraztsov, “Opredelyayuschee uravnenie nelineinykh vyazkouprugikh (polimernykh) sred v nulevom priblizhenii po parametram molekulyarnoi teorii i sledstviya dlya sdviga i rastyazheniya”, Dokl. RAN, 339:5 (1994), 612–615

[2] V. N. Pokrovskii, The mesoscopic theory of polymer dynamics, Springer Ser. Chem. Phys., 95, Springer, Dordrecht, 2010, xviii+256 pp. | DOI

[3] J. G. Oldroyd, “On the formulation of rheological equations of state”, Proc. Roy. Soc. London Ser. A, 200:1063 (1950), 523–541 | DOI | MR | Zbl

[4] A. M. Blokhin, A. V. Yegitov, D. L. Tkachev, “Linear instability of solutions in a mathematical model describing polymer flows in an infinite channel”, Comput. Math. Math. Phys., 55:5 (2015), 848–873 | DOI | DOI | MR | Zbl

[5] W. Heisenberg, “Über Stabilität und Turbulenz von Flüssigkeitsströmen”, Ann. Phys. (4), 74:15 (1924), 577–627 | DOI

[6] A. L. Krylov, “On the stability of a Poiseuille flow in a planar channel”, Soviet Math. Dokl., 5 (1964), 1642–1646 | MR

[7] A. M. Blokhin, D. L. Tkachev, A. V. Yegitov, “Asymptotic formula for the spectrum of the linear problem describing periodic polymer flows in an infinite channel”, J. Appl. Mech. Tech. Phys., 59:6 (2018), 992–1003 | DOI | DOI | MR | Zbl

[8] A. M. Blokhin, D. L. Tkachev, “Stability of Poiseuille-type flows in an MHD model of an incompressible polymeric fluid”, Sb. Math., 211:7 (2020), 901–921 | DOI | DOI | MR | Zbl

[9] A. B. Vatazhin, G. A. Lyubimov, S. A. Regirer, Magnitogidrodinamicheskie techeniya v kanalakh, Nauka, M., 1970, 672 pp. | Zbl

[10] J. A. Shercliff, A textbook of magnetohydrodynamics, Pergamon Press, Oxford–New York–Paris, 1965, ix+265 pp. | MR

[11] S. Mizohata, Henbidun hôteisiki ron [The theory of partial differential equations], Contemp. Math., 9, Iwanami Shoten, Tokyo, 1965, viii+462 pp. | MR

[12] N. V. Bambaeva, A. M. Blokhin, “Stationary solutions of equations of incompressible viscoelastic polymer liquid”, Comput. Math. Math. Phys., 54:5 (2014), 874–899 | DOI | DOI | MR | Zbl

[13] Yu. A. Altukhov, A. S. Gusev, G. V. Pyshnograi, Vvedenie v mezoskopicheskuyu teoriyu tekuchikh polimernykh sistem, AltGPA, Barnaul, 2012, 121 pp.

[14] G. D. Birkhoff, Collected mathematical papers, v. I, II, III, Amer. Math. Soc., New York, 1950, lvii+754 pp., vi+983 pp., vii+987 pp. | MR | MR | MR | Zbl