Lyapunov instability of stationary flows of a~polymeric fluid in a~channel with perforated walls
Sbornik. Mathematics, Tome 213 (2022) no. 3, pp. 283-299
Voir la notice de l'article provenant de la source Math-Net.Ru
The rheological Pokrovskii-Vinogradov model for flows of solutions or melts of an incompressible viscoelastic polymeric medium is studied in the case of flows in an infinite planar channel with perforated walls. The linear Lyapunov instability is proved for the base solution with constant flow rate in the class of perturbations periodic in the variable varying along the channel wall.
Bibliography: 14 titles.
Keywords:
incompressible viscoelastic polymeric medium, rheological relation, infinite planar channel with perforated walls, linear Lyapunov instability.
Mots-clés : base solution
Mots-clés : base solution
@article{SM_2022_213_3_a0,
author = {A. M. Blokhin and D. L. Tkachev},
title = {Lyapunov instability of stationary flows of a~polymeric fluid in a~channel with perforated walls},
journal = {Sbornik. Mathematics},
pages = {283--299},
publisher = {mathdoc},
volume = {213},
number = {3},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2022_213_3_a0/}
}
TY - JOUR AU - A. M. Blokhin AU - D. L. Tkachev TI - Lyapunov instability of stationary flows of a~polymeric fluid in a~channel with perforated walls JO - Sbornik. Mathematics PY - 2022 SP - 283 EP - 299 VL - 213 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2022_213_3_a0/ LA - en ID - SM_2022_213_3_a0 ER -
A. M. Blokhin; D. L. Tkachev. Lyapunov instability of stationary flows of a~polymeric fluid in a~channel with perforated walls. Sbornik. Mathematics, Tome 213 (2022) no. 3, pp. 283-299. http://geodesic.mathdoc.fr/item/SM_2022_213_3_a0/