Mots-clés : base solution
@article{SM_2022_213_3_a0,
author = {A. M. Blokhin and D. L. Tkachev},
title = {Lyapunov instability of stationary flows of a~polymeric fluid in a~channel with perforated walls},
journal = {Sbornik. Mathematics},
pages = {283--299},
year = {2022},
volume = {213},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2022_213_3_a0/}
}
TY - JOUR AU - A. M. Blokhin AU - D. L. Tkachev TI - Lyapunov instability of stationary flows of a polymeric fluid in a channel with perforated walls JO - Sbornik. Mathematics PY - 2022 SP - 283 EP - 299 VL - 213 IS - 3 UR - http://geodesic.mathdoc.fr/item/SM_2022_213_3_a0/ LA - en ID - SM_2022_213_3_a0 ER -
A. M. Blokhin; D. L. Tkachev. Lyapunov instability of stationary flows of a polymeric fluid in a channel with perforated walls. Sbornik. Mathematics, Tome 213 (2022) no. 3, pp. 283-299. http://geodesic.mathdoc.fr/item/SM_2022_213_3_a0/
[1] G. V. Pyshnograi, V. N. Pokrovskii, Yu. G. Yanovskii, Yu. N. Karnet, I. F. Obraztsov, “Opredelyayuschee uravnenie nelineinykh vyazkouprugikh (polimernykh) sred v nulevom priblizhenii po parametram molekulyarnoi teorii i sledstviya dlya sdviga i rastyazheniya”, Dokl. RAN, 339:5 (1994), 612–615
[2] V. N. Pokrovskii, The mesoscopic theory of polymer dynamics, Springer Ser. Chem. Phys., 95, Springer, Dordrecht, 2010, xviii+256 pp. | DOI
[3] J. G. Oldroyd, “On the formulation of rheological equations of state”, Proc. Roy. Soc. London Ser. A, 200:1063 (1950), 523–541 | DOI | MR | Zbl
[4] A. M. Blokhin, A. V. Yegitov, D. L. Tkachev, “Linear instability of solutions in a mathematical model describing polymer flows in an infinite channel”, Comput. Math. Math. Phys., 55:5 (2015), 848–873 | DOI | DOI | MR | Zbl
[5] W. Heisenberg, “Über Stabilität und Turbulenz von Flüssigkeitsströmen”, Ann. Phys. (4), 74:15 (1924), 577–627 | DOI
[6] A. L. Krylov, “On the stability of a Poiseuille flow in a planar channel”, Soviet Math. Dokl., 5 (1964), 1642–1646 | MR
[7] A. M. Blokhin, D. L. Tkachev, A. V. Yegitov, “Asymptotic formula for the spectrum of the linear problem describing periodic polymer flows in an infinite channel”, J. Appl. Mech. Tech. Phys., 59:6 (2018), 992–1003 | DOI | DOI | MR | Zbl
[8] A. M. Blokhin, D. L. Tkachev, “Stability of Poiseuille-type flows in an MHD model of an incompressible polymeric fluid”, Sb. Math., 211:7 (2020), 901–921 | DOI | DOI | MR | Zbl
[9] A. B. Vatazhin, G. A. Lyubimov, S. A. Regirer, Magnitogidrodinamicheskie techeniya v kanalakh, Nauka, M., 1970, 672 pp. | Zbl
[10] J. A. Shercliff, A textbook of magnetohydrodynamics, Pergamon Press, Oxford–New York–Paris, 1965, ix+265 pp. | MR
[11] S. Mizohata, Henbidun hôteisiki ron [The theory of partial differential equations], Contemp. Math., 9, Iwanami Shoten, Tokyo, 1965, viii+462 pp. | MR
[12] N. V. Bambaeva, A. M. Blokhin, “Stationary solutions of equations of incompressible viscoelastic polymer liquid”, Comput. Math. Math. Phys., 54:5 (2014), 874–899 | DOI | DOI | MR | Zbl
[13] Yu. A. Altukhov, A. S. Gusev, G. V. Pyshnograi, Vvedenie v mezoskopicheskuyu teoriyu tekuchikh polimernykh sistem, AltGPA, Barnaul, 2012, 121 pp.
[14] G. D. Birkhoff, Collected mathematical papers, v. I, II, III, Amer. Math. Soc., New York, 1950, lvii+754 pp., vi+983 pp., vii+987 pp. | MR | MR | MR | Zbl