Lyapunov instability of stationary flows of a~polymeric fluid in a~channel with perforated walls
Sbornik. Mathematics, Tome 213 (2022) no. 3, pp. 283-299

Voir la notice de l'article provenant de la source Math-Net.Ru

The rheological Pokrovskii-Vinogradov model for flows of solutions or melts of an incompressible viscoelastic polymeric medium is studied in the case of flows in an infinite planar channel with perforated walls. The linear Lyapunov instability is proved for the base solution with constant flow rate in the class of perturbations periodic in the variable varying along the channel wall. Bibliography: 14 titles.
Keywords: incompressible viscoelastic polymeric medium, rheological relation, infinite planar channel with perforated walls, linear Lyapunov instability.
Mots-clés : base solution
@article{SM_2022_213_3_a0,
     author = {A. M. Blokhin and D. L. Tkachev},
     title = {Lyapunov instability of stationary flows of a~polymeric fluid in a~channel with perforated walls},
     journal = {Sbornik. Mathematics},
     pages = {283--299},
     publisher = {mathdoc},
     volume = {213},
     number = {3},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2022_213_3_a0/}
}
TY  - JOUR
AU  - A. M. Blokhin
AU  - D. L. Tkachev
TI  - Lyapunov instability of stationary flows of a~polymeric fluid in a~channel with perforated walls
JO  - Sbornik. Mathematics
PY  - 2022
SP  - 283
EP  - 299
VL  - 213
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2022_213_3_a0/
LA  - en
ID  - SM_2022_213_3_a0
ER  - 
%0 Journal Article
%A A. M. Blokhin
%A D. L. Tkachev
%T Lyapunov instability of stationary flows of a~polymeric fluid in a~channel with perforated walls
%J Sbornik. Mathematics
%D 2022
%P 283-299
%V 213
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2022_213_3_a0/
%G en
%F SM_2022_213_3_a0
A. M. Blokhin; D. L. Tkachev. Lyapunov instability of stationary flows of a~polymeric fluid in a~channel with perforated walls. Sbornik. Mathematics, Tome 213 (2022) no. 3, pp. 283-299. http://geodesic.mathdoc.fr/item/SM_2022_213_3_a0/