Solarity and connectedness of sets in the space $C[a,b]$ and in finite-dimensional polyhedral spaces
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 213 (2022) no. 2, pp. 268-282
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Generalized $n$-piecewise functions constructed from given monotone path-connected boundedly compact subsets of the space $C[a,b]$ are studied. They are shown to be monotone path-connected suns. In finite-dimensional polyhedral spaces, luminosity points of sets admitting a lower semicontinuous selection of the metric projection operator are investigated. An example of a non-$B$-connected sun in a four-dimensional polyhedral normed space is constructed. 
Bibliography: 14 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
monotone path-connected set, Menger-connectedness, stably monotone path-connectedness, sun.
                    
                    
                    
                  
                
                
                @article{SM_2022_213_2_a5,
     author = {I. G. Tsar'kov},
     title = {Solarity and connectedness of sets in the space $C[a,b]$ and in finite-dimensional polyhedral spaces},
     journal = {Sbornik. Mathematics},
     pages = {268--282},
     publisher = {mathdoc},
     volume = {213},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2022_213_2_a5/}
}
                      
                      
                    TY - JOUR AU - I. G. Tsar'kov TI - Solarity and connectedness of sets in the space $C[a,b]$ and in finite-dimensional polyhedral spaces JO - Sbornik. Mathematics PY - 2022 SP - 268 EP - 282 VL - 213 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2022_213_2_a5/ LA - en ID - SM_2022_213_2_a5 ER -
I. G. Tsar'kov. Solarity and connectedness of sets in the space $C[a,b]$ and in finite-dimensional polyhedral spaces. Sbornik. Mathematics, Tome 213 (2022) no. 2, pp. 268-282. http://geodesic.mathdoc.fr/item/SM_2022_213_2_a5/
