@article{SM_2022_213_2_a5,
author = {I. G. Tsar'kov},
title = {Solarity and connectedness of sets in the space $C[a,b]$ and in finite-dimensional polyhedral spaces},
journal = {Sbornik. Mathematics},
pages = {268--282},
year = {2022},
volume = {213},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2022_213_2_a5/}
}
I. G. Tsar'kov. Solarity and connectedness of sets in the space $C[a,b]$ and in finite-dimensional polyhedral spaces. Sbornik. Mathematics, Tome 213 (2022) no. 2, pp. 268-282. http://geodesic.mathdoc.fr/item/SM_2022_213_2_a5/
[1] A. R. Alimov, “Monotone path-connectedness and solarity of Menger-connected sets in Banach spaces”, Izv. Math., 78:4 (2014), 641–655 | DOI | DOI | MR | Zbl
[2] A. L. Brown, “Suns in normed linear spaces which are finite dimensional”, Math. Ann., 279:1 (1987), 87–101 | DOI | MR | Zbl
[3] A. R. Alimov, I. G. Tsar'kov, “Connectedness and solarity in problems of best and near-best approximation”, Russian Math. Surveys, 71:1 (2016), 1–77 | DOI | DOI | MR | Zbl
[4] A. R. Alimov, “On finite-dimensional Banach spaces in which suns are connected”, Eurasian Math. J., 6:4 (2015), 7–18 | MR | Zbl
[5] H. Berens, L. Hetzelt, “Die metrische Struktur der Sonnen in $\ell_\infty(n)$”, Aequationes Math., 27:3 (1984), 274–287 | DOI | MR | Zbl
[6] V. A. Koshcheev, “The connectivity and approximative properties of sets in linear normed spaces”, Math. Notes, 17:2 (1975), 114–119 | DOI | MR | Zbl
[7] H. Berens, L. Hetzelt, “Suns and contractive retracts in the plane”, Teoriya priblizhenii funktsii, Trudy Mezhdunarodnoi koferentsii (Kiev, 1983), Nauka, M., 1983, 483–487
[8] A. R. Alimov, “Preservation of approximative properties of Chebyshev sets and suns in a plane”, Moscow Univ. Math. Bull., 63:5 (2008), 198–201 | DOI | MR | Zbl
[9] A. L. Brown, “On the connectedness properties of suns in finite dimensional spaces”, Functional analysis and optimization (Canberra, 1988), Proc. Centre Math. Anal. Austral. Nat. Univ., 20, Austral. Nat. Univ., Canberra, 1988, 1–15 | MR | Zbl
[10] I. G. Tsar'kov, “Local and global continuous $\varepsilon$-selection”, Izv. Math., 80:2 (2016), 442–461 | DOI | DOI | MR | Zbl
[11] I. G. Tsar'kov, “New criteria for the existence of a continuous $\varepsilon$-selection”, Math. Notes, 104:5 (2018), 727–734 | DOI | DOI | MR | Zbl
[12] I. G. Tsar'kov, “Continuous $\varepsilon$-selection and monotone path-connected sets”, Math. Notes, 101:6 (2017), 1040–1049 | DOI | DOI | MR | Zbl
[13] I. G. Tsar'kov, “Approximative properties of sets and continuous selections”, Sb. Math., 211:8 (2020), 1190–1211 | DOI | DOI | MR | Zbl
[14] I. G. Tsar'kov, “Properties of monotone path-connected sets”, Izv. Math., 85:2 (2021), 306–331 | DOI | DOI | MR | Zbl