Solarity and connectedness of sets in the space $C[a,b]$ and in finite-dimensional polyhedral spaces
Sbornik. Mathematics, Tome 213 (2022) no. 2, pp. 268-282 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Generalized $n$-piecewise functions constructed from given monotone path-connected boundedly compact subsets of the space $C[a,b]$ are studied. They are shown to be monotone path-connected suns. In finite-dimensional polyhedral spaces, luminosity points of sets admitting a lower semicontinuous selection of the metric projection operator are investigated. An example of a non-$B$-connected sun in a four-dimensional polyhedral normed space is constructed. Bibliography: 14 titles.
Keywords: monotone path-connected set, Menger-connectedness, stably monotone path-connectedness, sun.
@article{SM_2022_213_2_a5,
     author = {I. G. Tsar'kov},
     title = {Solarity and connectedness of sets in the space $C[a,b]$ and in finite-dimensional polyhedral spaces},
     journal = {Sbornik. Mathematics},
     pages = {268--282},
     year = {2022},
     volume = {213},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2022_213_2_a5/}
}
TY  - JOUR
AU  - I. G. Tsar'kov
TI  - Solarity and connectedness of sets in the space $C[a,b]$ and in finite-dimensional polyhedral spaces
JO  - Sbornik. Mathematics
PY  - 2022
SP  - 268
EP  - 282
VL  - 213
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2022_213_2_a5/
LA  - en
ID  - SM_2022_213_2_a5
ER  - 
%0 Journal Article
%A I. G. Tsar'kov
%T Solarity and connectedness of sets in the space $C[a,b]$ and in finite-dimensional polyhedral spaces
%J Sbornik. Mathematics
%D 2022
%P 268-282
%V 213
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2022_213_2_a5/
%G en
%F SM_2022_213_2_a5
I. G. Tsar'kov. Solarity and connectedness of sets in the space $C[a,b]$ and in finite-dimensional polyhedral spaces. Sbornik. Mathematics, Tome 213 (2022) no. 2, pp. 268-282. http://geodesic.mathdoc.fr/item/SM_2022_213_2_a5/

[1] A. R. Alimov, “Monotone path-connectedness and solarity of Menger-connected sets in Banach spaces”, Izv. Math., 78:4 (2014), 641–655 | DOI | DOI | MR | Zbl

[2] A. L. Brown, “Suns in normed linear spaces which are finite dimensional”, Math. Ann., 279:1 (1987), 87–101 | DOI | MR | Zbl

[3] A. R. Alimov, I. G. Tsar'kov, “Connectedness and solarity in problems of best and near-best approximation”, Russian Math. Surveys, 71:1 (2016), 1–77 | DOI | DOI | MR | Zbl

[4] A. R. Alimov, “On finite-dimensional Banach spaces in which suns are connected”, Eurasian Math. J., 6:4 (2015), 7–18 | MR | Zbl

[5] H. Berens, L. Hetzelt, “Die metrische Struktur der Sonnen in $\ell_\infty(n)$”, Aequationes Math., 27:3 (1984), 274–287 | DOI | MR | Zbl

[6] V. A. Koshcheev, “The connectivity and approximative properties of sets in linear normed spaces”, Math. Notes, 17:2 (1975), 114–119 | DOI | MR | Zbl

[7] H. Berens, L. Hetzelt, “Suns and contractive retracts in the plane”, Teoriya priblizhenii funktsii, Trudy Mezhdunarodnoi koferentsii (Kiev, 1983), Nauka, M., 1983, 483–487

[8] A. R. Alimov, “Preservation of approximative properties of Chebyshev sets and suns in a plane”, Moscow Univ. Math. Bull., 63:5 (2008), 198–201 | DOI | MR | Zbl

[9] A. L. Brown, “On the connectedness properties of suns in finite dimensional spaces”, Functional analysis and optimization (Canberra, 1988), Proc. Centre Math. Anal. Austral. Nat. Univ., 20, Austral. Nat. Univ., Canberra, 1988, 1–15 | MR | Zbl

[10] I. G. Tsar'kov, “Local and global continuous $\varepsilon$-selection”, Izv. Math., 80:2 (2016), 442–461 | DOI | DOI | MR | Zbl

[11] I. G. Tsar'kov, “New criteria for the existence of a continuous $\varepsilon$-selection”, Math. Notes, 104:5 (2018), 727–734 | DOI | DOI | MR | Zbl

[12] I. G. Tsar'kov, “Continuous $\varepsilon$-selection and monotone path-connected sets”, Math. Notes, 101:6 (2017), 1040–1049 | DOI | DOI | MR | Zbl

[13] I. G. Tsar'kov, “Approximative properties of sets and continuous selections”, Sb. Math., 211:8 (2020), 1190–1211 | DOI | DOI | MR | Zbl

[14] I. G. Tsar'kov, “Properties of monotone path-connected sets”, Izv. Math., 85:2 (2021), 306–331 | DOI | DOI | MR | Zbl