Values of the $\mathfrak{sl}_2$ weight system on a~family of graphs that are not the intersection graphs of chord diagrams
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 213 (2022) no. 2, pp. 235-267
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The Chmutov-Lando theorem claims that the value of a weight system (a function on the chord diagrams that satisfies the four-term Vassiliev relations) corresponding to the Lie algebra $\mathfrak{sl}_2$ depends only on the intersection graph of the chord diagram. 
We compute the values of the $\mathfrak{sl}_2$ weight system at the graphs in several infinite series, which are the joins of a graph with a small number of vertices and a discrete graph. In particular, we calculate these values for a series in which the initial graph is the cycle on five vertices; the graphs in this series, apart from the initial one, are not intersection graphs. 
We also derive a formula for the generating functions of the projections of graphs equal to the joins of an arbitrary graph and a discrete graph to the subspace of primitive elements of the Hopf algebra of graphs. Using the formula thus obtained, we calculate the values of the $\mathfrak{sl}_2$ weight system at projections of the graphs of the indicated form onto the subspace of primitive elements. Our calculations confirm Lando's conjecture concerning the values of the $\mathfrak{sl}_2$ weight system at projections onto the subspace of primitives. 
Bibliography: 17 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
chord diagram, $\mathfrak{sl}_2$ weight system, intersection graph, join of graphs, Hopf algebra.
                    
                    
                    
                  
                
                
                @article{SM_2022_213_2_a4,
     author = {P. A. Filippova},
     title = {Values of the $\mathfrak{sl}_2$ weight system on a~family of graphs that are not the intersection graphs of chord diagrams},
     journal = {Sbornik. Mathematics},
     pages = {235--267},
     publisher = {mathdoc},
     volume = {213},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2022_213_2_a4/}
}
                      
                      
                    TY  - JOUR
AU  - P. A. Filippova
TI  - Values of the $\mathfrak{sl}_2$ weight system on a~family of graphs that are not the intersection graphs of chord diagrams
JO  - Sbornik. Mathematics
PY  - 2022
SP  - 235
EP  - 267
VL  - 213
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2022_213_2_a4/
LA  - en
ID  - SM_2022_213_2_a4
ER  - 
                      
                      
                    %0 Journal Article
%A P. A. Filippova
%T Values of the $\mathfrak{sl}_2$ weight system on a~family of graphs that are not the intersection graphs of chord diagrams
%J Sbornik. Mathematics
%D 2022
%P 235-267
%V 213
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2022_213_2_a4/
%G en
%F SM_2022_213_2_a4
                      
                      
                    P. A. Filippova. Values of the $\mathfrak{sl}_2$ weight system on a~family of graphs that are not the intersection graphs of chord diagrams. Sbornik. Mathematics, Tome 213 (2022) no. 2, pp. 235-267. http://geodesic.mathdoc.fr/item/SM_2022_213_2_a4/
                  
                