A hyperbolicity criterion for a class of diffeomorphisms of an infinite-dimensional torus
Sbornik. Mathematics, Tome 213 (2022) no. 2, pp. 173-215 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

On an infinite-dimensional torus $\mathbb{T}^{\infty} = E/2\pi\mathbb{Z}^{\infty}$, where $E$ is an infinite-dimensional real Banach space and $\mathbb{Z}^{\infty}$ is an abstract integer lattice, a special class of diffeomorphisms $\operatorname{Diff}(\mathbb{T}^{\infty})$ is considered. It consists of the maps $G\colon \mathbb{T}^{\infty}\to\mathbb{T}^{\infty}$ equal to sums of invertible bounded linear operators preserving $\mathbb{Z}^{\infty}$ and $C^1$-smooth periodic additives. Necessary and sufficient conditions ensuring that such maps are hyperbolic (that is, are Anosov diffeomorphisms) are obtained. Bibliography: 15 titles.
Keywords: map, hyperbolicity, infinite-dimensional torus, Anosov diffeomorphism.
@article{SM_2022_213_2_a2,
     author = {S. D. Glyzin and A. Yu. Kolesov},
     title = {A~hyperbolicity criterion for a~class of diffeomorphisms of an infinite-dimensional torus},
     journal = {Sbornik. Mathematics},
     pages = {173--215},
     year = {2022},
     volume = {213},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2022_213_2_a2/}
}
TY  - JOUR
AU  - S. D. Glyzin
AU  - A. Yu. Kolesov
TI  - A hyperbolicity criterion for a class of diffeomorphisms of an infinite-dimensional torus
JO  - Sbornik. Mathematics
PY  - 2022
SP  - 173
EP  - 215
VL  - 213
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2022_213_2_a2/
LA  - en
ID  - SM_2022_213_2_a2
ER  - 
%0 Journal Article
%A S. D. Glyzin
%A A. Yu. Kolesov
%T A hyperbolicity criterion for a class of diffeomorphisms of an infinite-dimensional torus
%J Sbornik. Mathematics
%D 2022
%P 173-215
%V 213
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2022_213_2_a2/
%G en
%F SM_2022_213_2_a2
S. D. Glyzin; A. Yu. Kolesov. A hyperbolicity criterion for a class of diffeomorphisms of an infinite-dimensional torus. Sbornik. Mathematics, Tome 213 (2022) no. 2, pp. 173-215. http://geodesic.mathdoc.fr/item/SM_2022_213_2_a2/

[1] Dynamical systems IX. Dynamical systems with hyperbolic behaviour, Encyclopaedia Math. Sci., 66, ed. D. V. Anosov, Springer, Berlin, 1995, vi+235 pp. | DOI | MR | MR | Zbl

[2] A. Katok, B. Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia Math. Appl., 54, Cambridge Univ. Press, Cambridge, 1995, xviii+802 pp. | DOI | MR | Zbl

[3] B. Hasselblatt, A. Katok, A first course in dynamics with a panorama of recent developments, Cambridge Univ. Press, Cambridge, 2003, x+424 pp. | DOI | MR | Zbl

[4] H. M. Hastings, “On expansive homeomorphisms of the infinite torus”, The structure of attractors in dynamical systems (North Dakota State Univ., Fargo, ND, 1977), Lecture Notes in Math., 668, Springer, Berlin, 1978, 142–149 | DOI | MR | Zbl

[5] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “One class of structurally stable endomorphisms on an infinite-dimensional torus”, Differ. Equ., 56:10 (2020), 1382–1386 | DOI | DOI | MR | Zbl

[6] D. V. Anosov, “Geodesic flows on closed Riemann manifolds with negative curvature”, Proc. Steklov Inst. Math., 90 (1967), 1–235 | MR | Zbl

[7] A. Yu. Kolesov, N. Kh. Rozov, V. A. Sadovnichii, “Sufficient condition for the hyperbolicity of mappings of the torus”, Differ. Equ., 53:4 (2017), 457–478 | DOI | DOI | MR | Zbl

[8] A. Yu. Kolesov, N. Kh. Rozov, V. A. Sadovnichii, “On the hyperbolicity of toral endomorphisms”, Math. Notes, 105:2 (2019), 236–250 | DOI | DOI | MR | Zbl

[9] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “On some sufficient hyperbolicity conditions”, Proc. Steklov Inst. Math., 308 (2020), 107–124 | DOI | DOI | MR | Zbl

[10] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Solenoidal attractors of diffeomorphisms of annular sets”, Russian Math. Surveys, 75:2 (2020), 197–252 | DOI | DOI | MR | Zbl

[11] S. Yu. Pilyugin, Spaces of dynamical systems, De Gruyter Stud. Math. Phys., 3, De Gruyter, Berlin, 2012, xvi+229 pp. | DOI | MR | Zbl

[12] L. V. Kantorovich, G. P. Akilov, Functional analysis, Pergamon Press, Oxford–Elmsford, N.Y., 1982, xiv+589 pp. | MR | MR | Zbl

[13] S. Banach, S. Mazur, “Über mehrdeutige stetige Abbildungen”, Studia Math., 5 (1934), 174–178 | DOI | Zbl

[14] R. Plastock, “Homeomorphisms between Banach spaces”, Trans. Amer. Math. Soc., 200 (1974), 169–183 | DOI | MR | Zbl

[15] J. D. Farmer, E. Ott, J. A. Yorke, “The dimension of chaotic attractors”, Phys. D, 7:1-3 (1983), 153–180 | DOI | MR | Zbl