A~hyperbolicity criterion for a~class of diffeomorphisms of an infinite-dimensional torus
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 213 (2022) no. 2, pp. 173-215
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			On an infinite-dimensional torus $\mathbb{T}^{\infty} = E/2\pi\mathbb{Z}^{\infty}$, where $E$ is an infinite-dimensional real Banach space and $\mathbb{Z}^{\infty}$ is an abstract integer lattice, a special class of diffeomorphisms $\operatorname{Diff}(\mathbb{T}^{\infty})$ is considered. It consists of the maps $G\colon \mathbb{T}^{\infty}\to\mathbb{T}^{\infty}$ equal to sums of invertible bounded linear operators preserving $\mathbb{Z}^{\infty}$ and $C^1$-smooth periodic additives. Necessary and sufficient conditions ensuring that such maps are hyperbolic (that is, are Anosov diffeomorphisms) are obtained. 
Bibliography: 15 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
map, hyperbolicity, infinite-dimensional torus, Anosov diffeomorphism.
                    
                    
                    
                  
                
                
                @article{SM_2022_213_2_a2,
     author = {S. D. Glyzin and A. Yu. Kolesov},
     title = {A~hyperbolicity criterion for a~class of diffeomorphisms of an infinite-dimensional torus},
     journal = {Sbornik. Mathematics},
     pages = {173--215},
     publisher = {mathdoc},
     volume = {213},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2022_213_2_a2/}
}
                      
                      
                    TY - JOUR AU - S. D. Glyzin AU - A. Yu. Kolesov TI - A~hyperbolicity criterion for a~class of diffeomorphisms of an infinite-dimensional torus JO - Sbornik. Mathematics PY - 2022 SP - 173 EP - 215 VL - 213 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2022_213_2_a2/ LA - en ID - SM_2022_213_2_a2 ER -
S. D. Glyzin; A. Yu. Kolesov. A~hyperbolicity criterion for a~class of diffeomorphisms of an infinite-dimensional torus. Sbornik. Mathematics, Tome 213 (2022) no. 2, pp. 173-215. http://geodesic.mathdoc.fr/item/SM_2022_213_2_a2/
