A~hyperbolicity criterion for a~class of diffeomorphisms of an infinite-dimensional torus
Sbornik. Mathematics, Tome 213 (2022) no. 2, pp. 173-215

Voir la notice de l'article provenant de la source Math-Net.Ru

On an infinite-dimensional torus $\mathbb{T}^{\infty} = E/2\pi\mathbb{Z}^{\infty}$, where $E$ is an infinite-dimensional real Banach space and $\mathbb{Z}^{\infty}$ is an abstract integer lattice, a special class of diffeomorphisms $\operatorname{Diff}(\mathbb{T}^{\infty})$ is considered. It consists of the maps $G\colon \mathbb{T}^{\infty}\to\mathbb{T}^{\infty}$ equal to sums of invertible bounded linear operators preserving $\mathbb{Z}^{\infty}$ and $C^1$-smooth periodic additives. Necessary and sufficient conditions ensuring that such maps are hyperbolic (that is, are Anosov diffeomorphisms) are obtained. Bibliography: 15 titles.
Keywords: map, hyperbolicity, infinite-dimensional torus, Anosov diffeomorphism.
@article{SM_2022_213_2_a2,
     author = {S. D. Glyzin and A. Yu. Kolesov},
     title = {A~hyperbolicity criterion for a~class of diffeomorphisms of an infinite-dimensional torus},
     journal = {Sbornik. Mathematics},
     pages = {173--215},
     publisher = {mathdoc},
     volume = {213},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2022_213_2_a2/}
}
TY  - JOUR
AU  - S. D. Glyzin
AU  - A. Yu. Kolesov
TI  - A~hyperbolicity criterion for a~class of diffeomorphisms of an infinite-dimensional torus
JO  - Sbornik. Mathematics
PY  - 2022
SP  - 173
EP  - 215
VL  - 213
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2022_213_2_a2/
LA  - en
ID  - SM_2022_213_2_a2
ER  - 
%0 Journal Article
%A S. D. Glyzin
%A A. Yu. Kolesov
%T A~hyperbolicity criterion for a~class of diffeomorphisms of an infinite-dimensional torus
%J Sbornik. Mathematics
%D 2022
%P 173-215
%V 213
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2022_213_2_a2/
%G en
%F SM_2022_213_2_a2
S. D. Glyzin; A. Yu. Kolesov. A~hyperbolicity criterion for a~class of diffeomorphisms of an infinite-dimensional torus. Sbornik. Mathematics, Tome 213 (2022) no. 2, pp. 173-215. http://geodesic.mathdoc.fr/item/SM_2022_213_2_a2/