Topological classification of billiards bounded by confocal quadrics in three-dimensional Euclidean space
Sbornik. Mathematics, Tome 213 (2022) no. 2, pp. 129-160

Voir la notice de l'article provenant de la source Math-Net.Ru

We study billiards on compact connected domains in $\mathbb{R}^3$ bounded by a finite number of confocal quadrics meeting in dihedral angles equal to ${\pi}/{2}$. Billiards in such domains are integrable due to having three first integrals in involution inside the domain. We introduce two equivalence relations: combinatorial equivalence of billiard domains determined by the structure of their boundaries, and weak equivalence of the corresponding billiard systems on them. Billiard domains in $\mathbb{R}^3$ are classified with respect to combinatorial equivalence, resulting in 35 pairwise nonequivalent classes. For each of these obtained classes, we look for the homeomorphism class of the nonsingular isoenergy 5-manifold, and we show this to be one of three types: either $S^5$, or $S^1\times S^4$, or $S^2\times S^3$. We obtain 24 classes of pairwise nonequivalent (with respect to weak equivalence) Liouville foliations of billiards on these domains restricted to a nonsingular energy level. We also define bifurcation atoms of three-dimensional tori corresponding to the arcs of the bifurcation diagram. Bibliography: 59 titles.
Keywords: integrable billiard, integrable system, topological invariants.
Mots-clés : billiard, Liouville foliation
@article{SM_2022_213_2_a0,
     author = {G. V. Belozerov},
     title = {Topological classification of billiards bounded by confocal quadrics in three-dimensional {Euclidean} space},
     journal = {Sbornik. Mathematics},
     pages = {129--160},
     publisher = {mathdoc},
     volume = {213},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2022_213_2_a0/}
}
TY  - JOUR
AU  - G. V. Belozerov
TI  - Topological classification of billiards bounded by confocal quadrics in three-dimensional Euclidean space
JO  - Sbornik. Mathematics
PY  - 2022
SP  - 129
EP  - 160
VL  - 213
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2022_213_2_a0/
LA  - en
ID  - SM_2022_213_2_a0
ER  - 
%0 Journal Article
%A G. V. Belozerov
%T Topological classification of billiards bounded by confocal quadrics in three-dimensional Euclidean space
%J Sbornik. Mathematics
%D 2022
%P 129-160
%V 213
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2022_213_2_a0/
%G en
%F SM_2022_213_2_a0
G. V. Belozerov. Topological classification of billiards bounded by confocal quadrics in three-dimensional Euclidean space. Sbornik. Mathematics, Tome 213 (2022) no. 2, pp. 129-160. http://geodesic.mathdoc.fr/item/SM_2022_213_2_a0/