Mots-clés : billiard, Liouville foliation
@article{SM_2022_213_2_a0,
author = {G. V. Belozerov},
title = {Topological classification of billiards bounded by confocal quadrics in three-dimensional {Euclidean} space},
journal = {Sbornik. Mathematics},
pages = {129--160},
year = {2022},
volume = {213},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2022_213_2_a0/}
}
TY - JOUR AU - G. V. Belozerov TI - Topological classification of billiards bounded by confocal quadrics in three-dimensional Euclidean space JO - Sbornik. Mathematics PY - 2022 SP - 129 EP - 160 VL - 213 IS - 2 UR - http://geodesic.mathdoc.fr/item/SM_2022_213_2_a0/ LA - en ID - SM_2022_213_2_a0 ER -
G. V. Belozerov. Topological classification of billiards bounded by confocal quadrics in three-dimensional Euclidean space. Sbornik. Mathematics, Tome 213 (2022) no. 2, pp. 129-160. http://geodesic.mathdoc.fr/item/SM_2022_213_2_a0/
[1] G. D. Birkhoff, Dynamical systems, Amer. Math. Soc. Colloq. Publ., 9, Amer. Math. Soc., New York, 1927, viii+295 pp. | MR | Zbl | Zbl
[2] V. V. Kozlov, D. V. Treshchev, Billiards. A genetic introduction to the dynamics of systems with impacts, Transl. Math. Monogr., 89, Amer. Math. Soc., Providence, RI, 1991, viii+171 pp. | DOI | MR | MR | Zbl | Zbl
[3] S. Tabachnikov, Geometry and billiards, Stud. Math. Libr., 30, Amer. Math. Soc., Providence, RI; Mathematics Advanced Study Semesters, University Park, PA, 2005, xii+176 pp. | DOI | MR | Zbl
[4] V. Dragović, M. Radnović, “Bifurcations of Liouville tori in elliptical billiards”, Regul. Chaotic Dyn., 14:4-5 (2009), 479–494 | DOI | MR | Zbl
[5] V. Dragović, M. Radnović, Poncelet porisms and beyond. Integrable billiards, hyperelliptic Jacobians and pencils of quadrics, Front. Math., Birkhäuser/Springer Basel AG, Basel, 2011, viii+293 pp. | DOI | MR | Zbl
[6] V. V. Fokicheva, “Description of singularities for system “billiard in an ellipse” ”, Moscow Univ. Math. Bull., 67:5-6 (2012), 217–220 | DOI | MR | Zbl
[7] V. V. Fokicheva, “Description of singularities for billiard systems bounded by confocal ellipses or hyperbolas”, Moscow Univ. Math. Bull., 69:4 (2014), 148–158 | DOI | MR | Zbl
[8] V. V. Fokicheva, “A topological classification of billiards in locally planar domains bounded by arcs of confocal quadrics”, Sb. Math., 206:10 (2015), 1463–1507 | DOI | DOI | MR | Zbl
[9] V. V. Vedyushkina, “The Liouville foliation of nonconvex topological billiards”, Dokl. Math., 97:1 (2018), 1–5 | DOI | DOI | MR | Zbl
[10] V. V. Vedyushkina, “The Fomenko–Zieschang invariants of nonconvex topological billiards”, Sb. Math., 210:3 (2019), 310–363 | DOI | DOI | MR | Zbl
[11] V. V. Vedyushkina, A. T. Fomenko, “Integrable topological billiards and equivalent dynamical systems”, Izv. Math., 81:4 (2017), 688–733 | DOI | DOI | MR | Zbl
[12] Nguyen Tien Zung, “Symplectic topology of integrable Hamiltonian systems. II. Topological classification”, Compositio Math., 138:2 (2003), 125–156 | DOI | MR | Zbl
[13] A. T. Fomenko, “Topological invariants of Liouville integrable Hamiltonian systems”, Funct. Anal. Appl., 22:4 (1988), 286–296 | DOI | MR | Zbl
[14] A. T. Fomenko, “The theory of invariants of multidimensional integrable Hamiltonian systems (with arbitrary many degrees of freedom). Molecular table of all integrable systems with two degrees of freedom”, Topological classification of integrable systems, Adv. Soviet Math., 6, Amer. Math. Soc., Providence, RI, 1991, 1–35 | DOI | MR | Zbl
[15] A. T. Fomenko, “A bordism theory for integrable nondegenerate Hamiltonian systems with two degrees of freedom. A new topological invariant of higher-dimensional integrable systems”, Math. USSR-Izv., 39:1 (1992), 731–759 | DOI | MR | Zbl
[16] M. P. Kharlamov, P. E. Ryabov, “Topological atlas of the Kovalevskaya top in a double field”, J. Math. Sci. (N.Y.), 223:6 (2017), 775–809 | DOI | MR | Zbl
[17] A. T. Fomenko, H. Zieschang, “A topological invariant and a criterion for the equivalence of integrable Hamiltonian systems with two degrees of freedom”, Math. USSR-Izv., 36:3 (1991), 567–596 | DOI | MR | Zbl
[18] A. V. Bolsinov, A. T. Fomenko, Integrable Hamiltonian systems. Geometry, topology, classification, Chapman Hall/CRC, Boca Raton, FL, 2004, xvi+730 pp. | DOI | MR | MR | Zbl | Zbl
[19] A. V. Bolsinov, V. S. Matveev, A. T. Fomenko, “Two-dimensional Riemannian metrics with integrable geodesic flows. Local and global geometry”, Sb. Math., 189:10 (1998), 1441–1466 | DOI | DOI | MR | Zbl
[20] E. N. Selivanova, “Classification of geodesic flows of Liouville metrics on the two-dimensional torus up to topological equivalence”, Russian Acad. Sci. Sb. Math., 75:2 (1993), 491–505 | DOI | MR | Zbl
[21] V. V. Kalashnikov, “Topological classification of quadratic-integrable geodesic flows on a two-dimensional torus”, Russian Math. Surveys, 50:1 (1995), 200–201 | DOI | MR | Zbl
[22] E. O. Kantonistova, “Topological classification of integrable Hamiltonian systems in a potential field on surfaces of revolution”, Sb. Math., 207:3 (2016), 358–399 | DOI | DOI | MR | Zbl
[23] D. S. Timonina, “Liouville classification of integrable geodesic flows on a torus of revolution in a potential field”, Moscow Univ. Math. Bull., 72:3 (2017), 121–128 | DOI | MR | Zbl
[24] A. A. Oshemkov, “Fomenko invariants for the main integrable cases of the rigid body motion equations”, Topological classification of integrable systems, Adv. Soviet Math., 6, Amer. Math. Soc., Providence, RI, 1991, 67–146 | DOI | MR | Zbl
[25] A. V. Bolsinov, P. H. Richter, A. T. Fomenko, “The method of loop molecules and the topology of the Kovalevskaya top”, Sb. Math., 191:2 (2000), 151–188 | DOI | DOI | MR | Zbl
[26] P. V. Morozov, “The Liouville classification of integrable systems of the Clebsch case”, Sb. Math., 193:10 (2002), 1507–1533 | DOI | DOI | MR | Zbl
[27] P. V. Morozov, “Topology of Liouville foliations in the Steklov and the Sokolov integrable cases of Kirchhoff's equations”, Sb. Math., 195:3 (2004), 369–412 | DOI | DOI | MR | Zbl
[28] P. V. Morozov, “Calculation of the Fomenko–Zieschang invariants in the Kovalevskaya–Yehia integrable case”, Sb. Math., 198:8 (2007), 1119–1143 | DOI | DOI | MR | Zbl
[29] N. S. Slavina, “Topological classification of systems of Kovalevskaya–Yehia type”, Sb. Math., 205:1 (2014), 101–155 | DOI | DOI | MR | Zbl
[30] E. A. Kudryavtseva, A. A. Oshemkov, “Bifurkatsii integriruemykh mekhanicheskikh sistem s magnitnym polem na poverkhnostyakh vrascheniya”, Chebyshevskii sb., 21:2 (2020), 244–265 | DOI | MR | Zbl
[31] I. K. Kozlov, “The topology of the Liouville foliation for the Kovalevskaya integrable case on the Lie algebra $\mathrm{so}(4)$”, Sb. Math., 205:4 (2014), 532–572 | DOI | DOI | MR | Zbl
[32] V. A. Kibkalo, “The topology of the analog of Kovalevskaya integrability case on the Lie algebra $so(4)$ under zero area integral”, Moscow Univ. Math. Bull., 71:3 (2016), 119–123 | DOI | MR | Zbl
[33] V. Kibkalo, “Topological analysis of the Liouville foliation for the Kovalevskaya integrable case on the Lie algebra $\mathrm{so}(4)$”, Lobachevskii J. Math., 39:9 (2018), 1396–1399 | DOI | MR | Zbl
[34] V. A. Kibkalo, “Topological classification of Liouville foliations for the Kovalevskaya integrable case on the Lie algebra $\operatorname{so}(4)$”, Sb. Math., 210:5 (2019), 625–662 | DOI | DOI | MR | Zbl
[35] V. Kibkalo, “Topological classification of Liouville foliations for the Kovalevskaya integrable case on the Lie algebra $so(3, 1)$”, Topology Appl., 275 (2020), 107028, 10 pp. | DOI | MR | Zbl
[36] V. V. Fokicheva, A. T. Fomenko, “Integrable billiards model important integrable cases of rigid body dynamics”, Dokl. Math., 92:3 (2015), 682–684 | DOI | DOI | MR | Zbl
[37] V. V. Vedyushkina, “The Liouville foliation of the billiard book modelling the Goryachev–Chaplygin case”, Moscow Univ. Math. Bull., 75:1 (2020), 42–46 | DOI | MR | Zbl
[38] V. V. Vedyushkina, A. T. Fomenko, I. S. Kharcheva, “Modeling nondegenerate bifurcations of closures of solutions for integrable systems with two degrees of freedom by integrable topological billiards”, Dokl. Math., 97:2 (2018), 174–176 | DOI | DOI | MR | Zbl
[39] V. V. Vedyushkina, I. S. Kharcheva, “Billiard books model all three-dimensional bifurcations of integrable Hamiltonian systems”, Sb. Math., 209:12 (2018), 1690–1727 | DOI | DOI | MR | Zbl
[40] V. V. Vedyushkina, I. S. Kharcheva, “Billiard books realize all bases of Liouville foliations of integrable Hamiltonian systems”, Sb. Math., 212:8 (2021), 1122–1179 | DOI | DOI | MR | Zbl
[41] V. V. Vedyushkina, V. A. Kibkalo, A. T. Fomenko, “Topological modeling of integrable systems by billiards: realization of numerical invariants”, Dokl. Math., 102:1 (2020), 269–271 | DOI | DOI | Zbl
[42] V. V. Vedyushkina, V. A. Kibkalo, “Realization of the numerical invariant of the Seifert fibration of integrable systems by billiards”, Moscow Univ. Math. Bull., 75:4 (2020), 161–168 | DOI | MR | Zbl
[43] V. V. Vedyushkina, “Local modeling of Liouville foliations by billiards: implementation of edge invariants”, Moscow Univ. Math. Bull., 76:2 (2021), 60–64 | DOI | MR | Zbl
[44] V. A. Kibkalo, “Billiardy s potentsialom modeliruyut ryad chetyrekhmernykh osobennostei integriruemykh sistem”, Sovremennye problemy matematiki i mekhaniki, Materialy mezhdunarodnoi konferentsii, posvyaschennoi 80-letiyu akademika RAN V. A. Sadovnichego (Moskva, 2019), v. 2, MAKS Press, M., 2019, 563–566
[45] A. T. Fomenko, V. A. Kibkalo, “Saddle singularities in integrable Hamiltonian systems: examples and algorithms”, Contemporary approaches and methods in fundamental mathematics and mechanics, Underst. Complex Syst., Springer, Cham, 2021, 3–26 | DOI | MR | Zbl
[46] V. V. Vedyushkina, “Integrable billiard systems realize toric foliations on lens spaces and the 3-torus”, Sb. Math., 211:2 (2020), 201–225 | DOI | DOI | MR | Zbl
[47] V. A. Kibkalo, A. T. Fomenko, I. S. Kharcheva, “Realizatsiya integriruemykh gamiltonovykh sistem billiardnymi knizhkami”, Tr. MMO, 82, no. 2, 2021 (to appear) ; arXiv: 2012.05337
[48] I. F. Kobtsev, “An elliptic billiard in a potential force field: classification of motions, topological analysis”, Sb. Math., 211:7 (2020), 987–1013 | DOI | DOI | MR | Zbl
[49] S. E. Pustovoytov, “Topological analysis of a billiard in elliptic ring in a potential field”, J. Math. Sci. (N.Y.), 259:5 (2021), 712–729 | DOI | MR | Zbl
[50] S. E. Pustovoitov, “Topological analysis of a billiard bounded by confocal quadrics in a potential field”, Sb. Math., 212:2 (2021), 211–233 | DOI | DOI | MR | Zbl
[51] A. T. Fomenko, V. V. Vedyushkina, V. N. Zav'yalov, “Liouville foliations of topological billiards with slipping”, Russ. J. Math. Phys., 28:1 (2021), 37–55 | DOI | MR | Zbl
[52] E. E. Karginova, “Billiards bounded by arcs of confocal quadrics on the Minkowski plane”, Sb. Math., 211:1 (2020), 1–28 | DOI | DOI | MR | Zbl
[53] V. V. Vedyushkina, A. T. Fomenko, “Force evolutionary billiards and billiard equivalence of the Euler and Lagrange cases”, Dokl. Math., 103:1 (2021), 1–4 | DOI | DOI
[54] A. A. Glutsyuk, “On two-dimensional polynomially integrable billiards on surfaces of constant curvature”, Dokl. Math., 98:1 (2018), 382–385 | DOI | DOI | Zbl
[55] M. Bialy, A. E. Mironov, “Angular billiard and algebraic Birkhoff conjecture”, Adv. Math., 313 (2017), 102–126 | DOI | MR | Zbl
[56] M. Bialy, A. E. Mironov, “Polynomial non-integrability of magnetic billiards on the sphere and the hyperbolic plane”, Russian Math. Surveys, 74:2 (2019), 187–209 | DOI | DOI | MR | Zbl
[57] A. Avila, J. De Simoi, V. Kaloshin, “An integrable deformation of an ellipse of small eccentricity is an ellipse”, Ann. of Math. (2), 184:2 (2016), 527–558 | DOI | MR | Zbl
[58] V. Kaloshin, A. Sorrentino, “On the local Birkhoff conjecture for convex billiards”, Ann. of Math. (2), 188:1 (2018), 315–380 | DOI | MR | Zbl
[59] I. S. Kharcheva, “Isoenergetic manifolds of integrable billiard books”, Moscow Univ. Math. Bull., 75:4 (2020), 149–160 | DOI | MR | Zbl