Topological classification of billiards bounded by confocal quadrics in three-dimensional Euclidean space
Sbornik. Mathematics, Tome 213 (2022) no. 2, pp. 129-160
Voir la notice de l'article provenant de la source Math-Net.Ru
We study billiards on compact connected domains in $\mathbb{R}^3$ bounded by a finite number of confocal quadrics meeting in dihedral angles equal to ${\pi}/{2}$. Billiards in such domains are integrable due to having three first integrals in involution inside the domain. We introduce two equivalence relations: combinatorial equivalence of billiard domains determined by the structure of their boundaries, and weak equivalence of the corresponding billiard systems on them. Billiard domains in $\mathbb{R}^3$ are classified with respect to combinatorial equivalence, resulting in 35 pairwise nonequivalent classes. For each of these obtained classes, we look for the homeomorphism class of the nonsingular isoenergy 5-manifold, and we show this to be one of three types: either $S^5$, or $S^1\times S^4$, or $S^2\times S^3$. We obtain 24 classes of pairwise nonequivalent (with respect to weak equivalence) Liouville foliations of billiards on these domains restricted to a nonsingular energy level. We also define bifurcation atoms of three-dimensional tori corresponding to the arcs of the bifurcation diagram.
Bibliography: 59 titles.
Keywords:
integrable billiard, integrable system, topological invariants.
Mots-clés : billiard, Liouville foliation
Mots-clés : billiard, Liouville foliation
@article{SM_2022_213_2_a0,
author = {G. V. Belozerov},
title = {Topological classification of billiards bounded by confocal quadrics in three-dimensional {Euclidean} space},
journal = {Sbornik. Mathematics},
pages = {129--160},
publisher = {mathdoc},
volume = {213},
number = {2},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2022_213_2_a0/}
}
TY - JOUR AU - G. V. Belozerov TI - Topological classification of billiards bounded by confocal quadrics in three-dimensional Euclidean space JO - Sbornik. Mathematics PY - 2022 SP - 129 EP - 160 VL - 213 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2022_213_2_a0/ LA - en ID - SM_2022_213_2_a0 ER -
G. V. Belozerov. Topological classification of billiards bounded by confocal quadrics in three-dimensional Euclidean space. Sbornik. Mathematics, Tome 213 (2022) no. 2, pp. 129-160. http://geodesic.mathdoc.fr/item/SM_2022_213_2_a0/