On singular log Calabi-Yau compactifications of Landau-Ginzburg models
Sbornik. Mathematics, Tome 213 (2022) no. 1, pp. 88-108 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the procedure that constructs log Calabi-Yau compactifications of weak Landau-Ginzburg models of Fano varieties. We apply it to del Pezzo surfaces and coverings of projective spaces of index $1$. For coverings of degree greater than $2$ the log Calabi-Yau compactification is singular; moreover, no smooth projective log Calabi-Yau compactification exists. We also prove, in the cases under consideration, the conjecture that the number of components of the fibre over infinity is equal to the dimension of an anticanonical system of the Fano variety. Bibliography: 46 titles.
Keywords: Landau-Ginzburg models, Fano varieties, coverings.
Mots-clés : Calabi-Yau compactifications
@article{SM_2022_213_1_a3,
     author = {V. V. Przyjalkowski},
     title = {On singular log {Calabi-Yau} compactifications of {Landau-Ginzburg} models},
     journal = {Sbornik. Mathematics},
     pages = {88--108},
     year = {2022},
     volume = {213},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2022_213_1_a3/}
}
TY  - JOUR
AU  - V. V. Przyjalkowski
TI  - On singular log Calabi-Yau compactifications of Landau-Ginzburg models
JO  - Sbornik. Mathematics
PY  - 2022
SP  - 88
EP  - 108
VL  - 213
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2022_213_1_a3/
LA  - en
ID  - SM_2022_213_1_a3
ER  - 
%0 Journal Article
%A V. V. Przyjalkowski
%T On singular log Calabi-Yau compactifications of Landau-Ginzburg models
%J Sbornik. Mathematics
%D 2022
%P 88-108
%V 213
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2022_213_1_a3/
%G en
%F SM_2022_213_1_a3
V. V. Przyjalkowski. On singular log Calabi-Yau compactifications of Landau-Ginzburg models. Sbornik. Mathematics, Tome 213 (2022) no. 1, pp. 88-108. http://geodesic.mathdoc.fr/item/SM_2022_213_1_a3/

[1] V. V. Batyrev, Mnogomernye toricheskie mnogoobraziya s polozhitelnym antikanonicheskim klassom, Diss. ... kand. fiz.-matem. nauk, MGU, M., 1985, 135 pp.

[2] V. I. Danilov, “The geometry of toric varieties”, Russian Math. Surveys, 33:2 (1978), 97–154 | DOI | MR | Zbl

[3] L. Katzarkov, V. V. Przyjalkowski, A. Harder, “$\mathrm P=\mathrm W$ phenomena”, Math. Notes, 108:1 (2020), 39–49 | DOI | DOI | MR | Zbl

[4] Yu. I. Manin, Frobenius manifolds, quantum cohomology, and moduli spaces, Amer. Math. Soc. Colloq. Publ., 47, Amer. Math. Soc., Providence, RI, 1999, xiv+303 pp. | DOI | MR | Zbl

[5] V. V. Przyjalkowski, “Quantum cohomology of smooth complete intersections in weighted projective spaces and in singular toric varieties”, Sb. Math., 198:9 (2007), 1325–1340 | DOI | DOI | MR | Zbl

[6] V. V. Przyjalkowski, “Weak Landau–Ginzburg models for smooth Fano threefolds”, Izv. Math., 77:4 (2013), 772–794 | DOI | DOI | MR | Zbl

[7] V. V. Przyjalkowski, “Calabi–Yau compactifications of toric Landau–Ginzburg models for smooth Fano threefolds”, Sb. Math., 208:7 (2017), 992–1013 | DOI | DOI | MR | Zbl

[8] V. V. Przyjalkowski, “Toric Landau–Ginzburg models”, Russian Math. Surveys, 73:6 (2018), 1033–1118 | DOI | DOI | MR | Zbl

[9] V. V. Przyjalkowski, “On the Calabi–Yau compactifications of toric Landau–Ginzburg models for Fano complete intersections”, Math. Notes, 103:1 (2018), 104–110 | DOI | DOI | MR | Zbl

[10] V. V. Przyjalkowski, K. Rietsch, “Landau–Ginzburg models of complete intersections in Lagrangian Grassmannians”, Russian Math. Surveys, 76:3 (2021), 549–551 | DOI | DOI | MR | Zbl

[11] V. V. Przyjalkowski, C. A. Shramov, “On weak Landau–Ginzburg models for complete intersections in Grassmannians”, Russian Math. Surveys, 69:6 (2014), 1129–1131 | DOI | DOI | MR | Zbl

[12] V. V. Przyjalkowski, C. A. Shramov, “Laurent phenomenon for Landau–Ginzburg models of complete intersections in Grassmannians”, Proc. Steklov Inst. Math., 290 (2015), 91–102 | DOI | DOI | MR | Zbl

[13] V. V. Przyjalkowski, C. A. Shramov, “Automorphisms of weighted complete intersections”, Proc. Steklov Inst. Math., 307 (2019), 198–209 | DOI | DOI | MR | Zbl

[14] V. V. Przyjalkowski, C. A. Shramov, “Fano weighted complete intersections of large codimension”, Siberian Math. J., 61:2 (2020), 298–303 | DOI | DOI | MR | Zbl

[15] D. Auroux, L. Katzarkov, D. Orlov, “Mirror symmetry for Del Pezzo surfaces: vanishing cycles and coherent sheaves”, Invent. Math., 166:3 (2006), 537–582 | DOI | MR | Zbl

[16] V. V. Batyrev, “Toric degenerations of Fano varieties and constructing mirror manifolds”, The Fano conference (Torino, 2002), Univ. Torino, Torino, 2004, 109–122 | MR | Zbl

[17] V. V. Batyrev, I. Ciocan-Fontanine, B. Kim, D. van Straten, “Conifold transitions and mirror symmetry for Calabi–Yau complete intersections in Grassmannians”, Nuclear Phys. B, 514:3 (1998), 640–666 | DOI | MR | Zbl

[18] V. V. Batyrev, I. Ciocan-Fontanine, B. Kim, D. van Straten, “Mirror symmetry and toric degenerations of partial flag manifolds”, Acta Math., 184:1 (2000), 1–39 | DOI | MR | Zbl

[19] I. Cheltsov, V. Przyjalkowski, Katzarkov–Kontsevich–Pantev conjecture for Fano threefolds, arXiv: 1809.09218

[20] I. Cheltsov, V. Przyjalkowski, Fibers over infinity of Landau–Ginzburg models, arXiv: 2005.01534

[21] T. Coates, A. Corti, S. Galkin, A. Kasprzyk, “Quantum periods for 3-dimensional Fano manifolds”, Geom. Topol., 20:1 (2016), 103–256 | DOI | MR | Zbl

[22] T. Coates, A. Corti, S. Galkin, V. Golyshev, A. Kasprzyk, Fano varieties and extremal Laurent polynomials. A collaborative research blog https://coates.ma.ic.ac.uk/

[23] T. Coates, A. M. Kasprzyk, G. Pitton, K. Tveiten, Maximally mutable Laurent polynomials, arXiv: 2107.14253

[24] A. Corti, V. Golyshev, “Hypergeometric equations and weighted projective spaces”, Sci. China Math., 54:8 (2011), 1577–1590 | DOI | MR | Zbl

[25] I. Dolgachev, “Weighted projective varieties”, Group actions and vector fields (Vancouver, BC, 1981), Lecture Notes in Math., 956, Berlin, Springer, 1982, 34–71 | DOI | MR | Zbl

[26] C. F. Doran, A. Harder, “Toric degenerations and the Laurent polynomials related to Givental's Landau–Ginzburg models”, Canad. J. Math., 68:4 (2016), 784–815 | DOI | MR | Zbl

[27] T. Eguchi, K. Hori, Chuan-Sheng Xiong, “Gravitational quantum cohomology”, Internat. J. Modern Phys. A, 12:9 (1997), 1743–1782 | DOI | MR | Zbl

[28] A. Givental, “A mirror theorem for toric complete intersections”, Topological field theory, primitive forms and related topics (Kyoto, 1996), Progr. Math., 160, Birkhäuser Boston, Boston, MA, 1998, 141–175 | DOI | MR | Zbl

[29] A. Harder, “Hodge numbers of Landau–Ginzburg models”, Adv. Math., 378 (2021), 107436, 40 pp. | DOI | MR | Zbl

[30] K. Hori, C. Vafa, Mirror symmetry, arXiv: hep-th/0002222

[31] A. R. Iano-Fletcher, “Working with weighted complete intersections”, Explicit birational geometry of 3-folds, London Math. Soc. Lecture Note Ser., 281, Cambridge Univ. Press, Cambridge, 2000, 101–173 | DOI | MR | Zbl

[32] N. O. Ilten, J. Lewis, V. Przyjalkowski, “Toric degenerations of Fano threefolds giving weak Landau–Ginzburg models”, J. Algebra, 374 (2013), 104–121 | DOI | MR | Zbl

[33] N. O. Ilten, R. Vollmert, “Deformations of rational $T$-varieties”, J. Algebraic Geom., 21:3 (2012), 531–562 | DOI | MR | Zbl

[34] V. A. Iskovskikh, Yu. G. Prokhorov, “Fano varieties”, Algebraic geometry V, Encyclopaedia Math. Sci., 47, Springer, Berlin, 1999, 1–247 | MR | Zbl

[35] P. Jahnke, I. Radloff, “Gorenstein Fano threefolds with base points in the anticanonical system”, Compos. Math., 142:2 (2006), 422–432 | DOI | MR | Zbl

[36] A. Kasprzyk, L. Katzarkov, V. Przyjalkowski, D. Sakovics, Projecting Fanos in the mirror, arXiv: 1904.02194

[37] L. Katzarkov, M. Kontsevich, T. Pantev, “Bogomolov–Tian–Todorov theorems for Landau–Ginzburg models”, J. Differential Geom., 105:1 (2017), 55–117 | DOI | MR | Zbl

[38] Y. Kawamata, “Flops connect minimal models”, Publ. Res. Inst. Math. Sci., 44:2 (2008), 419–423 | DOI | MR | Zbl

[39] J. Kollár, “Singularities of pairs”, Algebraic geometry (Santa Cruz, 1995), Proc. Sympos. Pure Math., 62, Part 1, Amer. Math. Soc., Providence, RI, 1997, 221–287 | DOI | MR | Zbl

[40] J. Kollár, S. Mori, Birational geometry of algebraic varieties, With the collaboration of C. H. Clemens and A. Corti, transl. from the 1998 Japan. original, Cambridge Tracts in Math., 134, Cambridge Univ. Press, Cambridge, 1998, viii+254 pp. | DOI | MR | Zbl

[41] M. Kontsevich, “Homological algebra of mirror symmetry”, Proceedings of the international congress of mathematicians (Zürich, 1994), v. 1, Birkhäuser, Basel, 1995, 120–139 | DOI | MR | Zbl

[42] V. Przyjalkowski, “On Landau–Ginzburg models for Fano varieties”, Commun. Number Theory Phys., 1:4 (2007), 713–728 | DOI | MR | Zbl

[43] V. Przyjalkowski, “Hori–Vafa mirror models for complete intersections in weighted projective spaces and weak Landau–Ginzburg models”, Cent. Eur. J. Math., 9:5 (2011), 972–977 | DOI | MR | Zbl

[44] V. Przyjalkowski, C. Shramov, “On Hodge numbers of complete intersections and Landau–Ginzburg models”, Int. Math. Res. Not. IMRN, 2015:21 (2015), 11302–11332 | DOI | MR | Zbl

[45] V. Przyjalkowski, C. Shramov, “Nef partitions for codimension $2$ weighted complete intersections”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 19:3 (2019), 827–845 | DOI | MR | Zbl

[46] V. Przyjalkowski, C. Shramov, Weighted complete intersections, preprint