Nonlocal balance equations with parameters in the space of signed measures
Sbornik. Mathematics, Tome 213 (2022) no. 1, pp. 63-87 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A parametric family of nonlocal balance equations in the space of signed measures is studied. Under assumptions that cover a number of known conceptual models we establish the existence of the solution, its uniqueness and continuous dependence on the parameter and the initial distribution. Several corollaries of this theorem, which are useful for control theory, are discussed. In particular, this theorem yields the limit in the mean field of a system of ordinary differential equations, the existence of the optimal control for an assembly of trajectories, Trotter's formula for the product of semigroups of the corresponding operators, and the existence of a solution to a differential inclusion in the space of signed measures. Bibliography: 33 titles.
Keywords: signed measures, dynamical systems in measure spaces, Kantorovich-Rubinstein distance.
Mots-clés : nonlocal balance equations
@article{SM_2022_213_1_a2,
     author = {N. I. Pogodaev and M. V. Staritsyn},
     title = {Nonlocal balance equations with parameters in the space of signed measures},
     journal = {Sbornik. Mathematics},
     pages = {63--87},
     year = {2022},
     volume = {213},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2022_213_1_a2/}
}
TY  - JOUR
AU  - N. I. Pogodaev
AU  - M. V. Staritsyn
TI  - Nonlocal balance equations with parameters in the space of signed measures
JO  - Sbornik. Mathematics
PY  - 2022
SP  - 63
EP  - 87
VL  - 213
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2022_213_1_a2/
LA  - en
ID  - SM_2022_213_1_a2
ER  - 
%0 Journal Article
%A N. I. Pogodaev
%A M. V. Staritsyn
%T Nonlocal balance equations with parameters in the space of signed measures
%J Sbornik. Mathematics
%D 2022
%P 63-87
%V 213
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2022_213_1_a2/
%G en
%F SM_2022_213_1_a2
N. I. Pogodaev; M. V. Staritsyn. Nonlocal balance equations with parameters in the space of signed measures. Sbornik. Mathematics, Tome 213 (2022) no. 1, pp. 63-87. http://geodesic.mathdoc.fr/item/SM_2022_213_1_a2/

[1] L. Ambrosio, N. Gigli, G. Savaré, Gradient flows in metric spaces and in the space of probability measures, Lectures Math. ETH Zürich, Birkhäuser Verlag, Basel, 2005, viii+333 pp. | DOI | MR | Zbl

[2] L. Ambrosio, E. Mainini, S. Serfaty, “Gradient flow of the Chapman–Rubinstein–Schatzman model for signed vortices”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28:2 (2011), 217–246 | DOI | MR | Zbl

[3] Y. Averboukh, “Viability theorem for deterministic mean field type control systems”, Set-Valued Var. Anal., 26:4 (2018), 993–1008 | DOI | MR | Zbl

[4] E. J. Balder, “Necessary and sufficient conditions for $L_1$-strong-weak lower semicontinuity of integral functionals”, Nonlinear Anal., 11:12 (1987), 1399–1404 | DOI | MR | Zbl

[5] V. I. Bogachev, Weak convergence of measures, Math. Surveys Monogr., 234, Amer. Math. Soc., Providence, RI, 2018, xii+286 pp. | DOI | MR | Zbl

[6] V. I. Bogachev, N. V. Krylov, M. Röckner, S. V. Shaposhnikov, Fokker–Planck–Kolmogorov equations, Math. Surveys Monogr., 207, Amer. Math. Soc., Providence, RI, 2015, xii+479 pp. | DOI | MR | Zbl

[7] B. Bonnet, H. Frankowska, “Differential inclusions in Wasserstein spaces: the Cauchy–Lipschitz framework”, J. Differential Equations, 271 (2021), 594–637 | DOI | MR | Zbl

[8] A. Bressan, B. Piccoli, Introduction to the mathematical theory of control, AIMS Ser. Appl. Math., 2, Am. Inst. Math. Sci. (AIMS), Springfield, MO, 2007, xiv+312 pp. | MR | Zbl

[9] G. Cavagnari, A. Marigonda, Khai T. Nguyen, F. S. Priuli, “Generalized control systems in the space of probability measures”, Set-Valued Var. Anal., 26:3 (2018), 663–691 | DOI | MR | Zbl

[10] L. Chayes, H. K. Lei, “Transport and equilibrium in non-conservative systems”, Adv. Differential Equations, 23:1-2 (2018), 1–64 | MR | Zbl

[11] R. M. Colombo, M. Herty, M. Mercier, “Control of the continuity equation with a non local flow”, ESAIM Control Optim. Calc. Var., 17:2 (2011), 353–379 | DOI | MR | Zbl

[12] R. L. Dobrushin, “Vlasov equations”, Funct. Anal. Appl., 13:2 (1979), 115–123 | DOI | MR | Zbl

[13] N. Duteil, B. Piccoli, Control of collective dynamics with time-varying weights, 2020, arXiv: 2011.04387

[14] A. Figalli, N. Gigli, “A new transportation distance between non-negative measures, with applications to gradients flows with Dirichlet boundary conditions”, J. Math. Pures Appl. (9), 94:2 (2010), 107–130 | DOI | MR | Zbl

[15] W. Gangbo, Hwa Kil Kim, T. Pacini, Differential forms on Wasserstein space and infinite-dimensional Hamiltonian systems, Mem. Amer. Math. Soc., 211, no. 993, Amer. Math. Soc., Providence, RI, 2011, vi+77 pp. | DOI | MR | Zbl

[16] S. Kondratyev, L. Monsaingeon, D. Vorotnikov, “A new optimal transport distance on the space of finite Radon measures”, Adv. Differential Equations, 21:11-12 (2016), 1117–1164 | MR | Zbl

[17] C. Lattanzio, P. Marcati, “Global well-posedness and relaxation limits of a model for radiating gas”, J. Differential Equations, 190:2 (2003), 439–465 | DOI | MR | Zbl

[18] M. Liero, A. Mielke, “Gradient structures and geodesic convexity for reaction-diffusion systems”, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 371:2005 (2013), 20120346, 28 pp. | DOI | MR | Zbl

[19] M. Liero, A. Mielke, G. Savaré, “Optimal transport in competition with reaction: The Hellinger–Kantorovich distance and geodesic curves”, SIAM J. Math. Anal., 48:4 (2016), 2869–2911 | DOI | MR | Zbl

[20] E. Mainini, “A description of transport cost for signed measures”, Teoriya predstavlenii, dinamicheskie sistemy, kombinatornye metody. XX, Zap. nauch. sem. POMI, 390, POMI, SPb., 2011, 147–181 ; J. Math. Sci. (N.Y.), 181:6 (2012), 837–855 | MR | Zbl | DOI

[21] E. Mainini, “On the signed porous medium flow”, Netw. Heterog. Media, 7:3 (2012), 525–541 | DOI | MR | Zbl

[22] A. Marigonda, M. Quincampoix, “Mayer control problem with probabilistic uncertainty on initial positions”, J. Differential Equations, 264:5 (2018), 3212–3252 | DOI | MR | Zbl

[23] A. Mogilner, L. Edelstein-Keshet, “A non-local model for a swarm”, J. Math. Biol., 38:6 (1999), 534–570 | DOI | MR | Zbl

[24] F. Otto, “The geometry of dissipative evolution equations: the porous medium equation”, Comm. Partial Differential Equations, 26:1-2 (2001), 101–174 | DOI | MR | Zbl

[25] B. Piccoli, F. Rossi, “Generalized Wasserstein distance and its application to transport equations with source”, Arch. Ration. Mech. Anal., 211:1 (2014), 335–358 | DOI | MR | Zbl

[26] B. Piccoli, F. Rossi, “On properties of the generalized Wasserstein distance”, Arch. Ration. Mech. Anal., 222:3 (2016), 1339–1365 | DOI | MR | Zbl

[27] B. Piccoli, F. Rossi, M. Tournus, A Wasserstein norm for signed measures, with application to nonlocal transport equation with source term, 2019, arXiv: 1910.05105

[28] A. Tolstonogov, Differential inclusions in a Banach space, Math. Appl., 524, Rev. ed., Kluwer Acad. Publ., Dordrecht, 2000, xvi+302 pp. | DOI | MR | MR | Zbl | Zbl

[29] A. A. Tolstonogov, D. A. Tolstonogov, “$L_p$-continuous extreme selectors of multifunctions with decomposable values: existence theorems”, Set-Valued Anal., 4:2 (1996), 173–203 | DOI | MR | Zbl

[30] H. F. Trotter, “On the product of semi-groups of operators”, Proc. Amer. Math. Soc., 10:4 (1959), 545–551 | DOI | MR | Zbl

[31] C. Villani, Optimal transport. Old and new, Grundlehren Math. Wiss., 338, Springer-Verlag, Berlin, 2009, xxii+973 pp. | DOI | MR | Zbl

[32] Yu. G. Borisovich, B. D. Gelman, A. D. Myshkis, V. V. Obukhovskii, Vvedenie v teoriyu mnogoznachnykh otobrazhenii i differentsialnykh vklyuchenii, KomKniga, M., 2005, 215 pp. | MR | Zbl

[33] A. A. Tolstonogov, “Scorza–Dragoni's theorem for multi-valued mappings with variable domain of definition”, Math. Notes, 48:5 (1990), 1151–1158 | DOI | MR | Zbl