Mots-clés : nonlocal balance equations
@article{SM_2022_213_1_a2,
author = {N. I. Pogodaev and M. V. Staritsyn},
title = {Nonlocal balance equations with parameters in the space of signed measures},
journal = {Sbornik. Mathematics},
pages = {63--87},
year = {2022},
volume = {213},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2022_213_1_a2/}
}
N. I. Pogodaev; M. V. Staritsyn. Nonlocal balance equations with parameters in the space of signed measures. Sbornik. Mathematics, Tome 213 (2022) no. 1, pp. 63-87. http://geodesic.mathdoc.fr/item/SM_2022_213_1_a2/
[1] L. Ambrosio, N. Gigli, G. Savaré, Gradient flows in metric spaces and in the space of probability measures, Lectures Math. ETH Zürich, Birkhäuser Verlag, Basel, 2005, viii+333 pp. | DOI | MR | Zbl
[2] L. Ambrosio, E. Mainini, S. Serfaty, “Gradient flow of the Chapman–Rubinstein–Schatzman model for signed vortices”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28:2 (2011), 217–246 | DOI | MR | Zbl
[3] Y. Averboukh, “Viability theorem for deterministic mean field type control systems”, Set-Valued Var. Anal., 26:4 (2018), 993–1008 | DOI | MR | Zbl
[4] E. J. Balder, “Necessary and sufficient conditions for $L_1$-strong-weak lower semicontinuity of integral functionals”, Nonlinear Anal., 11:12 (1987), 1399–1404 | DOI | MR | Zbl
[5] V. I. Bogachev, Weak convergence of measures, Math. Surveys Monogr., 234, Amer. Math. Soc., Providence, RI, 2018, xii+286 pp. | DOI | MR | Zbl
[6] V. I. Bogachev, N. V. Krylov, M. Röckner, S. V. Shaposhnikov, Fokker–Planck–Kolmogorov equations, Math. Surveys Monogr., 207, Amer. Math. Soc., Providence, RI, 2015, xii+479 pp. | DOI | MR | Zbl
[7] B. Bonnet, H. Frankowska, “Differential inclusions in Wasserstein spaces: the Cauchy–Lipschitz framework”, J. Differential Equations, 271 (2021), 594–637 | DOI | MR | Zbl
[8] A. Bressan, B. Piccoli, Introduction to the mathematical theory of control, AIMS Ser. Appl. Math., 2, Am. Inst. Math. Sci. (AIMS), Springfield, MO, 2007, xiv+312 pp. | MR | Zbl
[9] G. Cavagnari, A. Marigonda, Khai T. Nguyen, F. S. Priuli, “Generalized control systems in the space of probability measures”, Set-Valued Var. Anal., 26:3 (2018), 663–691 | DOI | MR | Zbl
[10] L. Chayes, H. K. Lei, “Transport and equilibrium in non-conservative systems”, Adv. Differential Equations, 23:1-2 (2018), 1–64 | MR | Zbl
[11] R. M. Colombo, M. Herty, M. Mercier, “Control of the continuity equation with a non local flow”, ESAIM Control Optim. Calc. Var., 17:2 (2011), 353–379 | DOI | MR | Zbl
[12] R. L. Dobrushin, “Vlasov equations”, Funct. Anal. Appl., 13:2 (1979), 115–123 | DOI | MR | Zbl
[13] N. Duteil, B. Piccoli, Control of collective dynamics with time-varying weights, 2020, arXiv: 2011.04387
[14] A. Figalli, N. Gigli, “A new transportation distance between non-negative measures, with applications to gradients flows with Dirichlet boundary conditions”, J. Math. Pures Appl. (9), 94:2 (2010), 107–130 | DOI | MR | Zbl
[15] W. Gangbo, Hwa Kil Kim, T. Pacini, Differential forms on Wasserstein space and infinite-dimensional Hamiltonian systems, Mem. Amer. Math. Soc., 211, no. 993, Amer. Math. Soc., Providence, RI, 2011, vi+77 pp. | DOI | MR | Zbl
[16] S. Kondratyev, L. Monsaingeon, D. Vorotnikov, “A new optimal transport distance on the space of finite Radon measures”, Adv. Differential Equations, 21:11-12 (2016), 1117–1164 | MR | Zbl
[17] C. Lattanzio, P. Marcati, “Global well-posedness and relaxation limits of a model for radiating gas”, J. Differential Equations, 190:2 (2003), 439–465 | DOI | MR | Zbl
[18] M. Liero, A. Mielke, “Gradient structures and geodesic convexity for reaction-diffusion systems”, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 371:2005 (2013), 20120346, 28 pp. | DOI | MR | Zbl
[19] M. Liero, A. Mielke, G. Savaré, “Optimal transport in competition with reaction: The Hellinger–Kantorovich distance and geodesic curves”, SIAM J. Math. Anal., 48:4 (2016), 2869–2911 | DOI | MR | Zbl
[20] E. Mainini, “A description of transport cost for signed measures”, Teoriya predstavlenii, dinamicheskie sistemy, kombinatornye metody. XX, Zap. nauch. sem. POMI, 390, POMI, SPb., 2011, 147–181 ; J. Math. Sci. (N.Y.), 181:6 (2012), 837–855 | MR | Zbl | DOI
[21] E. Mainini, “On the signed porous medium flow”, Netw. Heterog. Media, 7:3 (2012), 525–541 | DOI | MR | Zbl
[22] A. Marigonda, M. Quincampoix, “Mayer control problem with probabilistic uncertainty on initial positions”, J. Differential Equations, 264:5 (2018), 3212–3252 | DOI | MR | Zbl
[23] A. Mogilner, L. Edelstein-Keshet, “A non-local model for a swarm”, J. Math. Biol., 38:6 (1999), 534–570 | DOI | MR | Zbl
[24] F. Otto, “The geometry of dissipative evolution equations: the porous medium equation”, Comm. Partial Differential Equations, 26:1-2 (2001), 101–174 | DOI | MR | Zbl
[25] B. Piccoli, F. Rossi, “Generalized Wasserstein distance and its application to transport equations with source”, Arch. Ration. Mech. Anal., 211:1 (2014), 335–358 | DOI | MR | Zbl
[26] B. Piccoli, F. Rossi, “On properties of the generalized Wasserstein distance”, Arch. Ration. Mech. Anal., 222:3 (2016), 1339–1365 | DOI | MR | Zbl
[27] B. Piccoli, F. Rossi, M. Tournus, A Wasserstein norm for signed measures, with application to nonlocal transport equation with source term, 2019, arXiv: 1910.05105
[28] A. Tolstonogov, Differential inclusions in a Banach space, Math. Appl., 524, Rev. ed., Kluwer Acad. Publ., Dordrecht, 2000, xvi+302 pp. | DOI | MR | MR | Zbl | Zbl
[29] A. A. Tolstonogov, D. A. Tolstonogov, “$L_p$-continuous extreme selectors of multifunctions with decomposable values: existence theorems”, Set-Valued Anal., 4:2 (1996), 173–203 | DOI | MR | Zbl
[30] H. F. Trotter, “On the product of semi-groups of operators”, Proc. Amer. Math. Soc., 10:4 (1959), 545–551 | DOI | MR | Zbl
[31] C. Villani, Optimal transport. Old and new, Grundlehren Math. Wiss., 338, Springer-Verlag, Berlin, 2009, xxii+973 pp. | DOI | MR | Zbl
[32] Yu. G. Borisovich, B. D. Gelman, A. D. Myshkis, V. V. Obukhovskii, Vvedenie v teoriyu mnogoznachnykh otobrazhenii i differentsialnykh vklyuchenii, KomKniga, M., 2005, 215 pp. | MR | Zbl
[33] A. A. Tolstonogov, “Scorza–Dragoni's theorem for multi-valued mappings with variable domain of definition”, Math. Notes, 48:5 (1990), 1151–1158 | DOI | MR | Zbl