Mots-clés : inverse map
@article{SM_2022_213_1_a1,
author = {D. P. Ilyutko and E. A. Sevost'yanov},
title = {On the local and boundary behaviour of inverse maps on {Riemannian} manifolds},
journal = {Sbornik. Mathematics},
pages = {42--62},
year = {2022},
volume = {213},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2022_213_1_a1/}
}
D. P. Ilyutko; E. A. Sevost'yanov. On the local and boundary behaviour of inverse maps on Riemannian manifolds. Sbornik. Mathematics, Tome 213 (2022) no. 1, pp. 42-62. http://geodesic.mathdoc.fr/item/SM_2022_213_1_a1/
[1] M. Cristea, “Open discrete mappings having local $ACL^n$ inverses”, Complex Var. Elliptic Equ., 55:1-3 (2010), 61–90 | DOI | MR | Zbl
[2] A. Golberg, R. Salimov, E. Sevost'yanov, “Singularities of discrete open mappings with controlled $p$-module”, J. Anal. Math., 127 (2015), 303–328 | DOI | MR | Zbl
[3] V. Ya. Gutlyanski\u{i}, A. Golberg, “On Lipschitz continuity of quasiconformal mappings in space”, J. Anal. Math., 109 (2009), 233–251 | DOI | MR | Zbl
[4] T. Iwaniec, G. Martin, Geometric function theory and non-linear analysis, Oxford Math. Monogr., The Clarendon Press, Oxford Univ. Press, New York, 2001, xvi+552 pp. | MR | Zbl
[5] O. Lehto, K. I. Virtanen, Quasiconformal mappings in the plane, Transl. from the German, Grundlehren Math. Wiss., 126, 2nd ed., Springer-Verlag, New York–Heidelberg, 1973, viii+258 pp. | MR | Zbl
[6] O. Martio, S. Rickman, J. Väisälä, Distortion and singularities of quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. A I, 465, Suomalainen Tiedeakatemia, Helsinki, 1970, 13 pp. | MR | Zbl
[7] O. Martio, V. Ryazanov, U. Srebro, E. Yakubov, “On $Q$-homeomorphisms”, Ann. Acad. Sci. Fenn. Math., 30:1 (2005), 49–69 | MR | Zbl
[8] O. Martio, V. Ryazanov, U. Srebro, E. Yakubov, Moduli in modern mapping theory, Springer Monogr. Math., Springer, New York, 2009, xii+367 pp. | DOI | MR | Zbl
[9] R. Näkki, Boundary behavior of quasiconformal mappings in $n$-space, Ann. Acad. Sci. Fenn. Ser. A I, 484, Suomalainen Tiedeakatemia, Helsinki, 1970, 50 pp. | MR | Zbl
[10] R. Näkki, B. Palka, “Uniform equicontinuity of quasiconformal mappings”, Proc. Amer. Math. Soc., 37:2 (1973), 427–433 | DOI | MR | Zbl
[11] S. Rickman, Quasiregular mappings, Ergeb. Math. Grenzgeb. (3), 26, Springer–Verlag, Berlin, 1993 | DOI | MR | Zbl
[12] V. Ryazanov, U. Srebro, E. Yakubov, “Finite mean oscillation and the Beltrami equation”, Israel J. Math., 153 (2006), 247–266 | DOI | MR | Zbl
[13] E. A. Sevost'yanov, R. R. Salimov, “On inner dilatations of the mappings with unbounded characteristic”, J. Math. Sci. (N.Y.), 178:1 (2011), 97–107 | DOI | MR | Zbl
[14] E. A. Sevost'yanov, “Local and boundary behavior of maps in metric spaces”, St. Petersburg Math. J., 28:6 (2017), 807–824 | DOI | MR | Zbl
[15] J. Väisälä, Lectures on $n$-dimensional quasiconformal mappings, Lecture Notes in Math., 229, Springer-Verlag, Berlin–New York, 1971, xiv+144 pp. | DOI | MR | Zbl
[16] D. P. Ilyutko, E. A. Sevost'yanov, “On local properties of one class of mappings on Riemannian manifolds”, J. Math. Sci. (N.Y.), 211:5 (2015), 660–667 | DOI | MR | Zbl
[17] D. P. Il'yutko, E. A. Sevost'yanov, “Open discrete mappings with unbounded coefficient of quasi-conformality on Riemannian manifolds”, Sb. Math., 207:4 (2016), 537–580 | DOI | DOI | MR | Zbl
[18] E. A. Sevost'yanov, S. A. Skvortsov, “On the convergence of mappings in metric spaces with direct and inverse modulus conditions”, Ukrainian Math. J., 70:7 (2018), 1097–1114 | DOI | MR | Zbl
[19] E. A. Sevost'yanov, S. A. Skvortsov, “On the local behavior of a class of inverse mappings”, J. Math. Sci. (N.Y.), 241:1 (2019), 77–89 | DOI | MR | Zbl
[20] E. Sevost'yanov, S. Skvortsov, “On mappings whose inverses satisfy the Poletsky inequality”, Ann. Acad. Sci. Fenn. Math., 45:1 (2020), 259–277 | DOI | MR | Zbl
[21] W. Hurewicz, H. Wallman, Dimension theory, Princeton Univ. Press, Princeton, NJ, 1948, vii+165 pp. | MR | Zbl
[22] M. W. Hirsch, Differential topology, Grad. Texts in Math., 33, Springer-Verlag, New York–Heidelberg, 1976, x+221 pp. | DOI | MR | MR | Zbl | Zbl
[23] V. V. Prasolov, Elements of combinatorial and differential topology, Grad. Stud. Math., 74, Amer. Math. Soc., Providence, RI, 2006, xii+331 pp. | DOI | MR | Zbl
[24] K. Kuratowski, Topology, v. II, New ed., rev. and augm., Academic Press, New York–London; Państwowe Wydawnictwo Naukowe Polish Scientific Publishers, Warsaw, 1968, xiv+608 pp. | MR | MR | Zbl
[25] D. A. Herron, P. Koskela, “Quasiextremal distance domains and conformal mappings onto circle domains”, Complex Variables Theory Appl., 15:3 (1990), 167–179 | DOI | MR | Zbl
[26] E. S. Afanas'eva, “Boundary behavior of ring $Q$-homeomorphisms on Riemannian manifolds”, Ukrainian Math. J., 63:10 (2012), 1479–1493 | DOI | MR | Zbl
[27] E. S. Smolovaya, “Boundary behavior of ring $Q$-homeomorphisms in metric spaces”, Ukrainian Math. J., 62:5 (2010), 785–793 | DOI | MR | Zbl
[28] E. A. Sevostyanov, “Equicontinuity of homeomorphisms with unbounded characteristic”, Siberian Adv. Math., 23:2 (2013), 106–122 | DOI | MR | Zbl
[29] M. Vuorinen, “On the existence of angular limits of $n$-dimensional quasiconformal mappings”, Ark. Mat., 18:1-2 (1980), 157–180 | DOI | MR | Zbl
[30] D. P. Ilyutko, E. A. Sevost'yanov, “On the equicontinuity of families of inverse mappings of Riemannian manifolds”, J. Math. Sci. (N.Y.), 246:5 (2020), 664–670 | DOI | Zbl