On the local and boundary behaviour of inverse maps on Riemannian manifolds
Sbornik. Mathematics, Tome 213 (2022) no. 1, pp. 42-62 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Results on the local behaviour of maps between Riemannian manifolds such that their inverses satisfy upper bounds on the distortion of the moduli of families of curves are obtained. For families of such maps theorems on their equicontinuity at interior points and boundary points of the domain are established. Bibliography: 30 titles.
Keywords: Riemannian manifold, modulus of a family of curves, map with bounded distortion, map with finite distortion, local behaviour of maps.
Mots-clés : inverse map
@article{SM_2022_213_1_a1,
     author = {D. P. Ilyutko and E. A. Sevost'yanov},
     title = {On the local and boundary behaviour of inverse maps on {Riemannian} manifolds},
     journal = {Sbornik. Mathematics},
     pages = {42--62},
     year = {2022},
     volume = {213},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2022_213_1_a1/}
}
TY  - JOUR
AU  - D. P. Ilyutko
AU  - E. A. Sevost'yanov
TI  - On the local and boundary behaviour of inverse maps on Riemannian manifolds
JO  - Sbornik. Mathematics
PY  - 2022
SP  - 42
EP  - 62
VL  - 213
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2022_213_1_a1/
LA  - en
ID  - SM_2022_213_1_a1
ER  - 
%0 Journal Article
%A D. P. Ilyutko
%A E. A. Sevost'yanov
%T On the local and boundary behaviour of inverse maps on Riemannian manifolds
%J Sbornik. Mathematics
%D 2022
%P 42-62
%V 213
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2022_213_1_a1/
%G en
%F SM_2022_213_1_a1
D. P. Ilyutko; E. A. Sevost'yanov. On the local and boundary behaviour of inverse maps on Riemannian manifolds. Sbornik. Mathematics, Tome 213 (2022) no. 1, pp. 42-62. http://geodesic.mathdoc.fr/item/SM_2022_213_1_a1/

[1] M. Cristea, “Open discrete mappings having local $ACL^n$ inverses”, Complex Var. Elliptic Equ., 55:1-3 (2010), 61–90 | DOI | MR | Zbl

[2] A. Golberg, R. Salimov, E. Sevost'yanov, “Singularities of discrete open mappings with controlled $p$-module”, J. Anal. Math., 127 (2015), 303–328 | DOI | MR | Zbl

[3] V. Ya. Gutlyanski\u{i}, A. Golberg, “On Lipschitz continuity of quasiconformal mappings in space”, J. Anal. Math., 109 (2009), 233–251 | DOI | MR | Zbl

[4] T. Iwaniec, G. Martin, Geometric function theory and non-linear analysis, Oxford Math. Monogr., The Clarendon Press, Oxford Univ. Press, New York, 2001, xvi+552 pp. | MR | Zbl

[5] O. Lehto, K. I. Virtanen, Quasiconformal mappings in the plane, Transl. from the German, Grundlehren Math. Wiss., 126, 2nd ed., Springer-Verlag, New York–Heidelberg, 1973, viii+258 pp. | MR | Zbl

[6] O. Martio, S. Rickman, J. Väisälä, Distortion and singularities of quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. A I, 465, Suomalainen Tiedeakatemia, Helsinki, 1970, 13 pp. | MR | Zbl

[7] O. Martio, V. Ryazanov, U. Srebro, E. Yakubov, “On $Q$-homeomorphisms”, Ann. Acad. Sci. Fenn. Math., 30:1 (2005), 49–69 | MR | Zbl

[8] O. Martio, V. Ryazanov, U. Srebro, E. Yakubov, Moduli in modern mapping theory, Springer Monogr. Math., Springer, New York, 2009, xii+367 pp. | DOI | MR | Zbl

[9] R. Näkki, Boundary behavior of quasiconformal mappings in $n$-space, Ann. Acad. Sci. Fenn. Ser. A I, 484, Suomalainen Tiedeakatemia, Helsinki, 1970, 50 pp. | MR | Zbl

[10] R. Näkki, B. Palka, “Uniform equicontinuity of quasiconformal mappings”, Proc. Amer. Math. Soc., 37:2 (1973), 427–433 | DOI | MR | Zbl

[11] S. Rickman, Quasiregular mappings, Ergeb. Math. Grenzgeb. (3), 26, Springer–Verlag, Berlin, 1993 | DOI | MR | Zbl

[12] V. Ryazanov, U. Srebro, E. Yakubov, “Finite mean oscillation and the Beltrami equation”, Israel J. Math., 153 (2006), 247–266 | DOI | MR | Zbl

[13] E. A. Sevost'yanov, R. R. Salimov, “On inner dilatations of the mappings with unbounded characteristic”, J. Math. Sci. (N.Y.), 178:1 (2011), 97–107 | DOI | MR | Zbl

[14] E. A. Sevost'yanov, “Local and boundary behavior of maps in metric spaces”, St. Petersburg Math. J., 28:6 (2017), 807–824 | DOI | MR | Zbl

[15] J. Väisälä, Lectures on $n$-dimensional quasiconformal mappings, Lecture Notes in Math., 229, Springer-Verlag, Berlin–New York, 1971, xiv+144 pp. | DOI | MR | Zbl

[16] D. P. Ilyutko, E. A. Sevost'yanov, “On local properties of one class of mappings on Riemannian manifolds”, J. Math. Sci. (N.Y.), 211:5 (2015), 660–667 | DOI | MR | Zbl

[17] D. P. Il'yutko, E. A. Sevost'yanov, “Open discrete mappings with unbounded coefficient of quasi-conformality on Riemannian manifolds”, Sb. Math., 207:4 (2016), 537–580 | DOI | DOI | MR | Zbl

[18] E. A. Sevost'yanov, S. A. Skvortsov, “On the convergence of mappings in metric spaces with direct and inverse modulus conditions”, Ukrainian Math. J., 70:7 (2018), 1097–1114 | DOI | MR | Zbl

[19] E. A. Sevost'yanov, S. A. Skvortsov, “On the local behavior of a class of inverse mappings”, J. Math. Sci. (N.Y.), 241:1 (2019), 77–89 | DOI | MR | Zbl

[20] E. Sevost'yanov, S. Skvortsov, “On mappings whose inverses satisfy the Poletsky inequality”, Ann. Acad. Sci. Fenn. Math., 45:1 (2020), 259–277 | DOI | MR | Zbl

[21] W. Hurewicz, H. Wallman, Dimension theory, Princeton Univ. Press, Princeton, NJ, 1948, vii+165 pp. | MR | Zbl

[22] M. W. Hirsch, Differential topology, Grad. Texts in Math., 33, Springer-Verlag, New York–Heidelberg, 1976, x+221 pp. | DOI | MR | MR | Zbl | Zbl

[23] V. V. Prasolov, Elements of combinatorial and differential topology, Grad. Stud. Math., 74, Amer. Math. Soc., Providence, RI, 2006, xii+331 pp. | DOI | MR | Zbl

[24] K. Kuratowski, Topology, v. II, New ed., rev. and augm., Academic Press, New York–London; Państwowe Wydawnictwo Naukowe Polish Scientific Publishers, Warsaw, 1968, xiv+608 pp. | MR | MR | Zbl

[25] D. A. Herron, P. Koskela, “Quasiextremal distance domains and conformal mappings onto circle domains”, Complex Variables Theory Appl., 15:3 (1990), 167–179 | DOI | MR | Zbl

[26] E. S. Afanas'eva, “Boundary behavior of ring $Q$-homeomorphisms on Riemannian manifolds”, Ukrainian Math. J., 63:10 (2012), 1479–1493 | DOI | MR | Zbl

[27] E. S. Smolovaya, “Boundary behavior of ring $Q$-homeomorphisms in metric spaces”, Ukrainian Math. J., 62:5 (2010), 785–793 | DOI | MR | Zbl

[28] E. A. Sevostyanov, “Equicontinuity of homeomorphisms with unbounded characteristic”, Siberian Adv. Math., 23:2 (2013), 106–122 | DOI | MR | Zbl

[29] M. Vuorinen, “On the existence of angular limits of $n$-dimensional quasiconformal mappings”, Ark. Mat., 18:1-2 (1980), 157–180 | DOI | MR | Zbl

[30] D. P. Ilyutko, E. A. Sevost'yanov, “On the equicontinuity of families of inverse mappings of Riemannian manifolds”, J. Math. Sci. (N.Y.), 246:5 (2020), 664–670 | DOI | Zbl