Global and semilocal theorems on implicit and inverse functions in Banach spaces
Sbornik. Mathematics, Tome 213 (2022) no. 1, pp. 1-41 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider continuous mappings between two Banach spaces that depend on a parameter with values in a topological space. These mappings are assumed to be continuously differentiable for each value of the parameter. Under normality (regularity) assumptions of the mappings under consideration, we obtain sufficient conditions for the existence of global and semilocal implicit functions. A priori estimates for solutions are given. As an application of these results, we obtain, in particular, a theorem on extending an implicit function from a given closed set to the whole parameter space and a theorem on coincidence points of mappings. Bibliography: 32 titles.
Keywords: global implicit function, semilocal implicit function, global inversion function theorem, normality condition, continuous extension of an implicit function.
@article{SM_2022_213_1_a0,
     author = {A. V. Arutyunov and S. E. Zhukovskiy},
     title = {Global and semilocal theorems on implicit and inverse functions in {Banach} spaces},
     journal = {Sbornik. Mathematics},
     pages = {1--41},
     year = {2022},
     volume = {213},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2022_213_1_a0/}
}
TY  - JOUR
AU  - A. V. Arutyunov
AU  - S. E. Zhukovskiy
TI  - Global and semilocal theorems on implicit and inverse functions in Banach spaces
JO  - Sbornik. Mathematics
PY  - 2022
SP  - 1
EP  - 41
VL  - 213
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2022_213_1_a0/
LA  - en
ID  - SM_2022_213_1_a0
ER  - 
%0 Journal Article
%A A. V. Arutyunov
%A S. E. Zhukovskiy
%T Global and semilocal theorems on implicit and inverse functions in Banach spaces
%J Sbornik. Mathematics
%D 2022
%P 1-41
%V 213
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2022_213_1_a0/
%G en
%F SM_2022_213_1_a0
A. V. Arutyunov; S. E. Zhukovskiy. Global and semilocal theorems on implicit and inverse functions in Banach spaces. Sbornik. Mathematics, Tome 213 (2022) no. 1, pp. 1-41. http://geodesic.mathdoc.fr/item/SM_2022_213_1_a0/

[1] R. G. Bartle, L. M. Graves, “Mappings between function spaces”, Trans. Amer. Math. Soc., 72:3 (1952), 400–413 | DOI | MR | Zbl

[2] V. M. Tikhomirov, “Teorema Lyusternika o kasatelnom prostranstve i nekotorye ee modifikatsii”, Optimalnoe upravlenie. Matem. vopr. upravleniya proizvodstvom, 7, Izd-vo MGU, M., 1977, 22–30

[3] A. V. Arutyunov, “Implicit function theorem without a priori assumptions about normality”, Comput. Math. Math. Phys., 46:2 (2006), 195–205 | DOI | MR | Zbl

[4] J. Hadamard, “Sur les transformations ponctuelles”, Bull. Soc. Math. France, 34 (1906), 71–84 | DOI | MR | Zbl

[5] J. M. Ortega, W. C. Rheinboldt, Iterative solution of nonlinear equations in several variables, Academic Press, New York–London, 1970, xx+572 pp. | MR | MR | Zbl

[6] W. Rheinboldt, “Local mapping relations and global implicit function theorems”, Trans. Amer. Math. Soc., 138 (1969), 183–198 | DOI | MR | Zbl

[7] R. Plastock, “Homeomorphisms between Banach spaces”, Trans. Amer. Math. Soc., 200 (1974), 169–183 | DOI | MR | Zbl

[8] B. H. Pourciau, “Hadamard's theorem for locally Lipschitzian maps”, J. Math. Anal. Appl., 85:1 (1982), 279–285 | DOI | MR | Zbl

[9] A. A. Abramov, L. F. Yukhno, “A numerical method for solving systems of nonlinear equations”, Comput. Math. Math. Phys., 55:11 (2015), 1794–1801 | DOI | DOI | MR | Zbl

[10] A. V. Arutyunov, S. E. Zhukovskiy, “Nonlocal generalized implicit function theorems in Hilbert spaces”, Differ. Equ., 56:12 (2020), 1525–1538 | DOI | MR | Zbl

[11] I. G. Tsar'kov, “Right inverse operators and $\varepsilon$-selections”, Russian Math. Surveys, 50:2 (1995), 453–454 | DOI | MR | Zbl

[12] J. Lindenstrauss, “On nonlinear projections in Banach spaces”, Michigan Math. J., 11:3 (1964), 263–287 | DOI | MR | Zbl

[13] A. V. Arutyunov, S. E. Zhukovskiy, “Application of methods of ordinary differential equations to global inverse function theorems”, Differ. Equ., 55:4 (2019), 437–448 | DOI | MR | Zbl

[14] A. V. Arutyunov, S. E. Zhukovskiy, “Hadamard's theorem for mappings with relaxed smoothness conditions”, Sb. Math., 210:2 (2019), 165–183 | DOI | DOI | MR | Zbl

[15] A. V. Arutyunov, A. F. Izmailov, S. E. Zhukovskiy, “Continuous selections of solutions for locally Lipschitzian equations”, J. Optim. Theory Appl., 185:3 (2020), 679–699 | DOI | MR | Zbl

[16] J. A. Jaramillo, S. Lajara, O. Madiedo, “Inversion of nonsmooth maps between Banach spaces”, Set-Valued Var. Anal., 27:4 (2019), 921–947 | DOI | MR | Zbl

[17] I. G. Tsar'kov, “On global existence of an implicit function”, Russian Acad. Sci. Sb. Math., 79:2 (1994), 287–313 | DOI | MR | Zbl

[18] E. Michael, “Continuous selections. I”, Ann. of Math. (2), 63:2 (1956), 361–382 | DOI | MR | Zbl

[19] M. J. Fabián, D. Preiss, “A generalization of the interior mapping theorem of Clarke and Pourciau”, Comment. Math. Univ. Carolin., 28:2 (1987), 311–324 | MR | Zbl

[20] A. V. Arutyunov, “Caristi's condition and existence of a minimum of a lower bounded function in a metric space. Applications to the theory of coincidence points”, Proc. Steklov Inst. Math., 291 (2015), 24–37 | DOI | DOI | MR | Zbl

[21] R. A. Aleksandryan, E. A. Mirzakhanyan, Obschaya topologiya, Vysshaya shkola, M., 1979, 336 pp. | Zbl

[22] Yu. G. Borisovich, B. D. Gelman, A. D. Myshkis, V. V. Obukhovskii, Vvedenie v teoriyu mnogoznachnykh otobrazhenii i differentsialnykh vklyuchenii, 2-e izd., ispr. i dop., Librokom, M., 2011, 224 pp. | MR | Zbl

[23] A. V. Arutyunov, S. E. Zhukovskiy, “On stability of continuous extensions of mappings with respect to Nemytskii operator”, Dokl. Math., 101:3 (2020), 182–184 | DOI | DOI

[24] S. M. Ulam, A collection of mathematical problems, Interscience Tracts in Pure and Applied Mathematics, 8, Interscience Publishers, New York–London, 1960, xiii+150 pp. | MR | Zbl | Zbl

[25] Teck-Cheong Lim, “On fixed point stability for set-valued contractive mappings with applications to generalized differential equations”, J. Math. Anal. Appl., 110:2 (1985), 436–441 | DOI | MR | Zbl

[26] A. V. Arutyunov, S. E. Zhukovskiy, “Perturbation of solutions of the coincidence point problem for two mappings”, Dokl. Math., 89:3 (2014), 346–348 | DOI | DOI | MR | Zbl

[27] A. V. Dmitruk, “On a nonlocal metric regularity of nonlinear operators”, Control Cybernet., 34:3 (2005), 723–746 | MR | Zbl

[28] B. S. Mordukhovich, Variational analysis and generalized differentiation, v. 1, Grundlehren Math. Wiss., 30, Basic theory, Springer-Verlag, Berlin, 2006, xxii+579 pp. | DOI | MR | Zbl

[29] A. V. Arutyunov, “Covering mappings in metric spaces and fixed points”, Dokl. Math., 76:2 (2007), 665–668 | DOI | MR | Zbl

[30] A. V. Arutyunov, S. E. Zhukovskiy, “Existence and properties of inverse mappings”, Proc. Steklov Inst. Math., 271 (2010), 12–22 | DOI | MR | Zbl

[31] F. E. Browder, “On the convergence of successive approximations for nonlinear functional equations”, Nederl. Akad. Wetensch. Proc. Ser. A, 71, Indag. Math., 30 (1968), 27–35 | DOI | MR | Zbl

[32] J. Jachymski, “Around Browder's fixed point theorem for contractions”, J. Fixed Point Theory Appl., 5 (2009), 47–61 | DOI | MR | Zbl