@article{SM_2022_213_1_a0,
author = {A. V. Arutyunov and S. E. Zhukovskiy},
title = {Global and semilocal theorems on implicit and inverse functions in {Banach} spaces},
journal = {Sbornik. Mathematics},
pages = {1--41},
year = {2022},
volume = {213},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2022_213_1_a0/}
}
A. V. Arutyunov; S. E. Zhukovskiy. Global and semilocal theorems on implicit and inverse functions in Banach spaces. Sbornik. Mathematics, Tome 213 (2022) no. 1, pp. 1-41. http://geodesic.mathdoc.fr/item/SM_2022_213_1_a0/
[1] R. G. Bartle, L. M. Graves, “Mappings between function spaces”, Trans. Amer. Math. Soc., 72:3 (1952), 400–413 | DOI | MR | Zbl
[2] V. M. Tikhomirov, “Teorema Lyusternika o kasatelnom prostranstve i nekotorye ee modifikatsii”, Optimalnoe upravlenie. Matem. vopr. upravleniya proizvodstvom, 7, Izd-vo MGU, M., 1977, 22–30
[3] A. V. Arutyunov, “Implicit function theorem without a priori assumptions about normality”, Comput. Math. Math. Phys., 46:2 (2006), 195–205 | DOI | MR | Zbl
[4] J. Hadamard, “Sur les transformations ponctuelles”, Bull. Soc. Math. France, 34 (1906), 71–84 | DOI | MR | Zbl
[5] J. M. Ortega, W. C. Rheinboldt, Iterative solution of nonlinear equations in several variables, Academic Press, New York–London, 1970, xx+572 pp. | MR | MR | Zbl
[6] W. Rheinboldt, “Local mapping relations and global implicit function theorems”, Trans. Amer. Math. Soc., 138 (1969), 183–198 | DOI | MR | Zbl
[7] R. Plastock, “Homeomorphisms between Banach spaces”, Trans. Amer. Math. Soc., 200 (1974), 169–183 | DOI | MR | Zbl
[8] B. H. Pourciau, “Hadamard's theorem for locally Lipschitzian maps”, J. Math. Anal. Appl., 85:1 (1982), 279–285 | DOI | MR | Zbl
[9] A. A. Abramov, L. F. Yukhno, “A numerical method for solving systems of nonlinear equations”, Comput. Math. Math. Phys., 55:11 (2015), 1794–1801 | DOI | DOI | MR | Zbl
[10] A. V. Arutyunov, S. E. Zhukovskiy, “Nonlocal generalized implicit function theorems in Hilbert spaces”, Differ. Equ., 56:12 (2020), 1525–1538 | DOI | MR | Zbl
[11] I. G. Tsar'kov, “Right inverse operators and $\varepsilon$-selections”, Russian Math. Surveys, 50:2 (1995), 453–454 | DOI | MR | Zbl
[12] J. Lindenstrauss, “On nonlinear projections in Banach spaces”, Michigan Math. J., 11:3 (1964), 263–287 | DOI | MR | Zbl
[13] A. V. Arutyunov, S. E. Zhukovskiy, “Application of methods of ordinary differential equations to global inverse function theorems”, Differ. Equ., 55:4 (2019), 437–448 | DOI | MR | Zbl
[14] A. V. Arutyunov, S. E. Zhukovskiy, “Hadamard's theorem for mappings with relaxed smoothness conditions”, Sb. Math., 210:2 (2019), 165–183 | DOI | DOI | MR | Zbl
[15] A. V. Arutyunov, A. F. Izmailov, S. E. Zhukovskiy, “Continuous selections of solutions for locally Lipschitzian equations”, J. Optim. Theory Appl., 185:3 (2020), 679–699 | DOI | MR | Zbl
[16] J. A. Jaramillo, S. Lajara, O. Madiedo, “Inversion of nonsmooth maps between Banach spaces”, Set-Valued Var. Anal., 27:4 (2019), 921–947 | DOI | MR | Zbl
[17] I. G. Tsar'kov, “On global existence of an implicit function”, Russian Acad. Sci. Sb. Math., 79:2 (1994), 287–313 | DOI | MR | Zbl
[18] E. Michael, “Continuous selections. I”, Ann. of Math. (2), 63:2 (1956), 361–382 | DOI | MR | Zbl
[19] M. J. Fabián, D. Preiss, “A generalization of the interior mapping theorem of Clarke and Pourciau”, Comment. Math. Univ. Carolin., 28:2 (1987), 311–324 | MR | Zbl
[20] A. V. Arutyunov, “Caristi's condition and existence of a minimum of a lower bounded function in a metric space. Applications to the theory of coincidence points”, Proc. Steklov Inst. Math., 291 (2015), 24–37 | DOI | DOI | MR | Zbl
[21] R. A. Aleksandryan, E. A. Mirzakhanyan, Obschaya topologiya, Vysshaya shkola, M., 1979, 336 pp. | Zbl
[22] Yu. G. Borisovich, B. D. Gelman, A. D. Myshkis, V. V. Obukhovskii, Vvedenie v teoriyu mnogoznachnykh otobrazhenii i differentsialnykh vklyuchenii, 2-e izd., ispr. i dop., Librokom, M., 2011, 224 pp. | MR | Zbl
[23] A. V. Arutyunov, S. E. Zhukovskiy, “On stability of continuous extensions of mappings with respect to Nemytskii operator”, Dokl. Math., 101:3 (2020), 182–184 | DOI | DOI
[24] S. M. Ulam, A collection of mathematical problems, Interscience Tracts in Pure and Applied Mathematics, 8, Interscience Publishers, New York–London, 1960, xiii+150 pp. | MR | Zbl | Zbl
[25] Teck-Cheong Lim, “On fixed point stability for set-valued contractive mappings with applications to generalized differential equations”, J. Math. Anal. Appl., 110:2 (1985), 436–441 | DOI | MR | Zbl
[26] A. V. Arutyunov, S. E. Zhukovskiy, “Perturbation of solutions of the coincidence point problem for two mappings”, Dokl. Math., 89:3 (2014), 346–348 | DOI | DOI | MR | Zbl
[27] A. V. Dmitruk, “On a nonlocal metric regularity of nonlinear operators”, Control Cybernet., 34:3 (2005), 723–746 | MR | Zbl
[28] B. S. Mordukhovich, Variational analysis and generalized differentiation, v. 1, Grundlehren Math. Wiss., 30, Basic theory, Springer-Verlag, Berlin, 2006, xxii+579 pp. | DOI | MR | Zbl
[29] A. V. Arutyunov, “Covering mappings in metric spaces and fixed points”, Dokl. Math., 76:2 (2007), 665–668 | DOI | MR | Zbl
[30] A. V. Arutyunov, S. E. Zhukovskiy, “Existence and properties of inverse mappings”, Proc. Steklov Inst. Math., 271 (2010), 12–22 | DOI | MR | Zbl
[31] F. E. Browder, “On the convergence of successive approximations for nonlinear functional equations”, Nederl. Akad. Wetensch. Proc. Ser. A, 71, Indag. Math., 30 (1968), 27–35 | DOI | MR | Zbl
[32] J. Jachymski, “Around Browder's fixed point theorem for contractions”, J. Fixed Point Theory Appl., 5 (2009), 47–61 | DOI | MR | Zbl