@article{SM_2022_213_12_a6,
author = {M. E. Shirokov},
title = {Convergence criterion for quantum relative entropy and its use},
journal = {Sbornik. Mathematics},
pages = {1740--1772},
year = {2022},
volume = {213},
number = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2022_213_12_a6/}
}
M. E. Shirokov. Convergence criterion for quantum relative entropy and its use. Sbornik. Mathematics, Tome 213 (2022) no. 12, pp. 1740-1772. http://geodesic.mathdoc.fr/item/SM_2022_213_12_a6/
[1] B. Schumacher and M. D. Westmoreland, “Relative entropy in quantum information theory”, Quantum computation and information (Washington, DC 2000), Contemp. Math., 305, Amer. Math. Soc., Providence, RI, 2002, 265–289 ; arXiv: quant-ph/0004045 | DOI | MR | Zbl
[2] V. Vedral, “The role of relative entropy in quantum information theory”, Rev. Modern Phys., 74:1 (2002), 197–234 | DOI | MR | Zbl
[3] A. Wehrl, “General properties of entropy”, Rev. Modern Phys., 50:2 (1978), 221–250 | DOI | MR
[4] M. Ohya and D. Petz, Quantum entropy and its use, Theoret. Math. Phys., Corr. 2nd pr., Springer-Verlag, Berlin, 2004, 357 pp. | MR | Zbl
[5] A. S. Holevo, Quantum systems, channels, information, Moscow Center for Continuous Mathematical Education, Moscow, 2010, 328 pp.; English transl., A. S. Holevo, Quantum systems, channels, information. A mathematical introduction, De Gruyter Stud. Math. Phys., 16, De Gruyter, Berlin, 2012, xiv+349 pp. | DOI | MR | Zbl
[6] M. M. Wilde, Quantum information theory, Cambridge Univ. Press, Cambridge, 2013, xvi+655 pp. | DOI | MR | Zbl
[7] G. Lindblad, “Expectations and entropy inequalities for finite quantum systems”, Comm. Math. Phys., 39:2 (1974), 111–119 | DOI | MR | Zbl
[8] J. Naudts, “Continuity of a class of entropies and relative entropies”, Rev. Math. Phys., 16:6 (2004), 809–822 | DOI | MR | Zbl
[9] M. E. Shirokov, “Convergence conditions for the quantum relative entropy and other applications of the deneralized quantum Dini lemma”, Lobachevskii J. Math., 43:7 (2022), 1755–1777 ; arXiv: 2205.09108 | DOI | Zbl
[10] B. Simon, Operator theory, Compr. Course Anal., 4, Amer. Math. Soc., Providence, RI, 2015, xviii+749 pp. | DOI | MR | Zbl
[11] L. Mirsky, “Symmetric gauge functions and unitarily invariant norms”, Quart. J. Math. Oxford Ser. (2), 11 (1960), 50–59 | DOI | MR | Zbl
[12] M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information, Cambridge Univ. Press, Cambridge, 2000, xxvi+676 pp. | MR | Zbl
[13] W. Rudin, Principles of mathematical analysis, Internat. Ser. Pure Appl. Math., 3rd ed., McGraw-Hill Book Co., New York–Auckland–Düsseldorf, 1976, x+342 pp. | MR | Zbl
[14] H. Umegaki, “Conditional expectation in an operator algebra. IV. Entropy and information”, Kōdai Math. Sem. Rep., 14:2 (1962), 59–85 | DOI | MR | Zbl
[15] O. Bratteli and D. W. Robinson, Operator algebras and quantum statistical mechanics, v. 1, Texts Monogr. Phys., $C^*$- and $W^*$-algebras, symmetry groups, decomposition of states, Springer-Verlag, New York–Heidelberg–Berlin, 1979, xii+500 pp. | DOI | MR | Zbl
[16] M. Reed and B. Simon, Methods of modern mathematical physics, v. I, Functional analysis, Academic Press, Inc., New York–London, 1972, xvii+325 pp. | MR | Zbl
[17] M. E. Shirokov and A. S. Holevo, “On approximation of infinite-dimensional quantum channels”, Probl. Peredachi Inf., 44:2 (2008), 3–22 ; English transl. in Problems Inform. Transmission, 44:2 (2008), 73–90 | MR | Zbl | DOI
[18] M. E. Shirokov, “Strong convergence of quantum channels: continuity of the Stinespring dilation and discontinuity of the unitary dilation”, J. Math. Phys., 61:8 (2020), 082204, 14 pp. | DOI | MR | Zbl
[19] G. F. Dell'Antonio, “On the limits of sequences of normal states”, Comm. Pure Appl. Math., 20:2 (1967), 413–429 | DOI | MR | Zbl
[20] M. E. Shirokov, “Strong* convergence of quantum channels”, Quantum Inf. Process., 20:4 (2021), 145, 16 pp. | DOI | MR
[21] A. Winter, Energy-constrained diamond norm with applications to the uniform continuity of continuous variable channel capacities, arXiv: 1712.10267
[22] M. E. Shirokov, “Entropy characteristics of subsets of states. I”, Izv. Ross. Akad. Nauk Ser. Mat., 70:6 (2006), 193–222 ; English transl. in Izv. Math., 70:6 (2006), 1265–1292 | DOI | MR | Zbl | DOI
[23] G. Lindblad, “Completely positive maps and entropy inequalities”, Comm. Math. Phys., 40:2 (1975), 147–151 | DOI | MR | Zbl
[24] M. E. Shirokov, Continuity of characteristics of composite quantum systems: a review, arXiv: 2201.11477
[25] G. Lindblad, “Entropy, information and quantum measurements”, Comm. Math. Phys., 33 (1973), 305–322 | DOI | MR
[26] M. E. Shirokov and A. V. Bulinski, “On quantum channels and operations preserving finiteness of the von Neumann entropy”, Lobachevskii J. Math., 41:12 (2020), 2383–2396 | DOI | MR | Zbl
[27] N. I. Ahiezer and I. M. Glazman, Theory of linear operators in Hilbert space, 2nd ed., Nauka, Moscow, 1966, 543 pp. ; German transl., N. I. Achiezer und I. M. Glasmann, Theorie der linearen Operatoren im Hilbert-Raum, Math. Lehrbücher Monogr. I. Abt. Math. Lehrbücher, 4, Akademie-Verlag, Berlin, 1968, xvi+488 pp. | MR | Zbl | MR | Zbl
[28] M.-D. Choi, “Completely positive linear maps on complex matrices”, Linear Algebra Appl., 10:3 (1975), 285–290 | DOI | MR | Zbl
[29] A. Jamiolkowski, “Linear transformations which preserve trace and positive semidefiniteness of operators”, Rep. Math. Phys., 3:4 (1972), 275–278 | DOI | MR | Zbl