Hodge level of weighted complete intersections of general type
Sbornik. Mathematics, Tome 213 (2022) no. 12, pp. 1679-1694 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that smooth varieties of general type that are well-formed weighted complete intersections of Cartier divisors have the maximal Hodge level, that is, their rightmost middle Hodge numbers do not vanish. We show that this does not hold in the quasi-smooth case. Bibliography: 23 titles.
Keywords: weighted complete intersections, varieties of general type, Hodge level.
@article{SM_2022_213_12_a3,
     author = {V. V. Przyjalkowski},
     title = {Hodge level of weighted complete intersections of general type},
     journal = {Sbornik. Mathematics},
     pages = {1679--1694},
     year = {2022},
     volume = {213},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2022_213_12_a3/}
}
TY  - JOUR
AU  - V. V. Przyjalkowski
TI  - Hodge level of weighted complete intersections of general type
JO  - Sbornik. Mathematics
PY  - 2022
SP  - 1679
EP  - 1694
VL  - 213
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2022_213_12_a3/
LA  - en
ID  - SM_2022_213_12_a3
ER  - 
%0 Journal Article
%A V. V. Przyjalkowski
%T Hodge level of weighted complete intersections of general type
%J Sbornik. Mathematics
%D 2022
%P 1679-1694
%V 213
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2022_213_12_a3/
%G en
%F SM_2022_213_12_a3
V. V. Przyjalkowski. Hodge level of weighted complete intersections of general type. Sbornik. Mathematics, Tome 213 (2022) no. 12, pp. 1679-1694. http://geodesic.mathdoc.fr/item/SM_2022_213_12_a3/

[1] V. I. Danilov, “The geometry of toric varieties”, Uspekhi Mat. Nauk, 33:2(200) (1978), 85–134 ; English transl. in Russian Math. Surveys, 33:2 (1978), 97–154 | MR | Zbl | DOI

[2] V. V. Przyjalkowski and C. A. Shramov, “Fano weighted complete intersections of large codimension”, Sibirsk. Mat. Zh., 61:2 (2020), 377–384 ; English transl. in Siberian Math. J., 61:2 (2020), 298–303 | DOI | MR | Zbl | DOI

[3] V. V. Przyjalkowski and C. A. Shramov, “Smooth prime Fano complete intersections in toric varieties”, Mat. Zametki, 109:4 (2021), 590–596 ; English transl. in Math. Notes, 109:4 (2021), 609–613 | DOI | MR | Zbl | DOI

[4] V. V. Batyrev and D. A. Cox, “On the Hodge structure of projective hypersurfaces in toric varieties”, Duke Math. J., 75:2 (1994), 293–338 | DOI | MR | Zbl

[5] J. A. Carlson, “Extensions of mixed Hodge structures”, Journées de géometrie algébrique (Angers 1979), Sijthoff Noordhoff, Alphen aan den Rijn–Germantown, MD, 1980, 107–127 | MR | Zbl

[6] D. I. Cartwright and T. Steger, “Enumeration of the 50 fake projective planes”, C. R. Math. Acad. Sci. Paris, 348:1–2 (2010), 11–13 | DOI | MR | Zbl

[7] J.-J. Chen, J. A. Chen and M. Chen, “On quasismooth weighted complete intersections”, J. Algebraic Geom., 20:2 (2011), 239–262 | DOI | MR | Zbl

[8] A. Dimca, “Residues and cohomology of complete intersections”, Duke Math. J., 78:1 (1995), 89–100 | DOI | MR | Zbl

[9] I. Dolgachev, “Weighted projective varieties”, Group actions and vector fields (Vancouver, BC 1981), Lecture Notes in Math., 956, Springer, Berlin, 1982, 34–71 | DOI | MR | Zbl

[10] E. Fatighenti and G. Mongardi, “A note on a Griffiths-type ring for complete intersections in Grassmannians”, Math. Z., 299:3–4 (2021), 1651–1672 | DOI | MR | Zbl

[11] P. Griffiths, “On the periods of certain rational integrals. I, II”, Ann. of Math. (2), 90:3 (1969), 460–495, 496–541 | DOI | MR | Zbl

[12] A. R. Iano-Fletcher, “Working with weighted complete intersections”, Explicit birational geometry of 3-folds, London Math. Soc. Lecture Note Ser., 281, Cambridge Univ. Press, Cambridge, 2000, 101–173 | DOI | MR | Zbl

[13] A. Kasprzyk, “Bounds on fake weighted projective space”, Kodai Math. J., 32:2 (2009), 197–208 | DOI | MR | Zbl

[14] A. R. Mavlyutov, “Cohomology of complete intersections in toric varieties”, Pacific J. Math., 191:1 (1999), 133–144 | DOI | MR | Zbl

[15] D. Mumford, “An algebraic surface with $K$ ample, $(K^2)=9$, $p_g=q=0$”, Amer. J. Math., 101:1 (1979), 233–244 | DOI | MR | Zbl

[16] J. Nagel, “The Abel-Jacobi map for complete intersections”, Indag. Math. (N.S.), 8:1 (1997), 95–113 | DOI | MR | Zbl

[17] M. Pizzato, T. Sano and L. Tasin, “Effective nonvanishing for Fano weighted complete intersections”, Algebra Number Theory, 11:10 (2017), 2369–2395 | DOI | MR | Zbl

[18] V. Przyjalkowski and C. Shramov, “Hodge level for weighted complete intersections”, Collect. Math., 71:3 (2020), 549–574 | DOI | MR | Zbl

[19] V. Przyjalkowski and C. Shramov, Weighted complete intersections, preprint

[20] M. Rapoport, “Complément à l'article de P. Deligne `La conjecture de Weil pour les surfaces $K3$' ”, Invent. Math., 15 (1972), 227–236 | DOI | MR | Zbl

[21] J. B. Rosser and L. Schoenfeld, “Approximate formulas for some functions of prime numbers”, Illinois J. Math., 6 (1962), 64–94 | DOI | MR | Zbl

[22] M. Rossi and L. Terracini, “Linear algebra and toric data of weighted projective spaces”, Rend. Semin. Mat. Univ. Politec. Torino, 70:4 (2012), 469–495 | MR | Zbl

[23] J. J. Sylvester, “On subinvariants, i.e. semi-invariants to binary quantics of an unlimited order”, Amer. J. Math., 5:1 (1882), 79–136 | DOI | MR | Zbl