Hodge level of weighted complete intersections of general type
Sbornik. Mathematics, Tome 213 (2022) no. 12, pp. 1679-1694

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that smooth varieties of general type that are well-formed weighted complete intersections of Cartier divisors have the maximal Hodge level, that is, their rightmost middle Hodge numbers do not vanish. We show that this does not hold in the quasi-smooth case. Bibliography: 23 titles.
Keywords: weighted complete intersections, varieties of general type, Hodge level.
@article{SM_2022_213_12_a3,
     author = {V. V. Przyjalkowski},
     title = {Hodge level of weighted complete intersections of general type},
     journal = {Sbornik. Mathematics},
     pages = {1679--1694},
     publisher = {mathdoc},
     volume = {213},
     number = {12},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2022_213_12_a3/}
}
TY  - JOUR
AU  - V. V. Przyjalkowski
TI  - Hodge level of weighted complete intersections of general type
JO  - Sbornik. Mathematics
PY  - 2022
SP  - 1679
EP  - 1694
VL  - 213
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2022_213_12_a3/
LA  - en
ID  - SM_2022_213_12_a3
ER  - 
%0 Journal Article
%A V. V. Przyjalkowski
%T Hodge level of weighted complete intersections of general type
%J Sbornik. Mathematics
%D 2022
%P 1679-1694
%V 213
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2022_213_12_a3/
%G en
%F SM_2022_213_12_a3
V. V. Przyjalkowski. Hodge level of weighted complete intersections of general type. Sbornik. Mathematics, Tome 213 (2022) no. 12, pp. 1679-1694. http://geodesic.mathdoc.fr/item/SM_2022_213_12_a3/