@article{SM_2022_213_12_a3,
author = {V. V. Przyjalkowski},
title = {Hodge level of weighted complete intersections of general type},
journal = {Sbornik. Mathematics},
pages = {1679--1694},
year = {2022},
volume = {213},
number = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2022_213_12_a3/}
}
V. V. Przyjalkowski. Hodge level of weighted complete intersections of general type. Sbornik. Mathematics, Tome 213 (2022) no. 12, pp. 1679-1694. http://geodesic.mathdoc.fr/item/SM_2022_213_12_a3/
[1] V. I. Danilov, “The geometry of toric varieties”, Uspekhi Mat. Nauk, 33:2(200) (1978), 85–134 ; English transl. in Russian Math. Surveys, 33:2 (1978), 97–154 | MR | Zbl | DOI
[2] V. V. Przyjalkowski and C. A. Shramov, “Fano weighted complete intersections of large codimension”, Sibirsk. Mat. Zh., 61:2 (2020), 377–384 ; English transl. in Siberian Math. J., 61:2 (2020), 298–303 | DOI | MR | Zbl | DOI
[3] V. V. Przyjalkowski and C. A. Shramov, “Smooth prime Fano complete intersections in toric varieties”, Mat. Zametki, 109:4 (2021), 590–596 ; English transl. in Math. Notes, 109:4 (2021), 609–613 | DOI | MR | Zbl | DOI
[4] V. V. Batyrev and D. A. Cox, “On the Hodge structure of projective hypersurfaces in toric varieties”, Duke Math. J., 75:2 (1994), 293–338 | DOI | MR | Zbl
[5] J. A. Carlson, “Extensions of mixed Hodge structures”, Journées de géometrie algébrique (Angers 1979), Sijthoff Noordhoff, Alphen aan den Rijn–Germantown, MD, 1980, 107–127 | MR | Zbl
[6] D. I. Cartwright and T. Steger, “Enumeration of the 50 fake projective planes”, C. R. Math. Acad. Sci. Paris, 348:1–2 (2010), 11–13 | DOI | MR | Zbl
[7] J.-J. Chen, J. A. Chen and M. Chen, “On quasismooth weighted complete intersections”, J. Algebraic Geom., 20:2 (2011), 239–262 | DOI | MR | Zbl
[8] A. Dimca, “Residues and cohomology of complete intersections”, Duke Math. J., 78:1 (1995), 89–100 | DOI | MR | Zbl
[9] I. Dolgachev, “Weighted projective varieties”, Group actions and vector fields (Vancouver, BC 1981), Lecture Notes in Math., 956, Springer, Berlin, 1982, 34–71 | DOI | MR | Zbl
[10] E. Fatighenti and G. Mongardi, “A note on a Griffiths-type ring for complete intersections in Grassmannians”, Math. Z., 299:3–4 (2021), 1651–1672 | DOI | MR | Zbl
[11] P. Griffiths, “On the periods of certain rational integrals. I, II”, Ann. of Math. (2), 90:3 (1969), 460–495, 496–541 | DOI | MR | Zbl
[12] A. R. Iano-Fletcher, “Working with weighted complete intersections”, Explicit birational geometry of 3-folds, London Math. Soc. Lecture Note Ser., 281, Cambridge Univ. Press, Cambridge, 2000, 101–173 | DOI | MR | Zbl
[13] A. Kasprzyk, “Bounds on fake weighted projective space”, Kodai Math. J., 32:2 (2009), 197–208 | DOI | MR | Zbl
[14] A. R. Mavlyutov, “Cohomology of complete intersections in toric varieties”, Pacific J. Math., 191:1 (1999), 133–144 | DOI | MR | Zbl
[15] D. Mumford, “An algebraic surface with $K$ ample, $(K^2)=9$, $p_g=q=0$”, Amer. J. Math., 101:1 (1979), 233–244 | DOI | MR | Zbl
[16] J. Nagel, “The Abel-Jacobi map for complete intersections”, Indag. Math. (N.S.), 8:1 (1997), 95–113 | DOI | MR | Zbl
[17] M. Pizzato, T. Sano and L. Tasin, “Effective nonvanishing for Fano weighted complete intersections”, Algebra Number Theory, 11:10 (2017), 2369–2395 | DOI | MR | Zbl
[18] V. Przyjalkowski and C. Shramov, “Hodge level for weighted complete intersections”, Collect. Math., 71:3 (2020), 549–574 | DOI | MR | Zbl
[19] V. Przyjalkowski and C. Shramov, Weighted complete intersections, preprint
[20] M. Rapoport, “Complément à l'article de P. Deligne `La conjecture de Weil pour les surfaces $K3$' ”, Invent. Math., 15 (1972), 227–236 | DOI | MR | Zbl
[21] J. B. Rosser and L. Schoenfeld, “Approximate formulas for some functions of prime numbers”, Illinois J. Math., 6 (1962), 64–94 | DOI | MR | Zbl
[22] M. Rossi and L. Terracini, “Linear algebra and toric data of weighted projective spaces”, Rend. Semin. Mat. Univ. Politec. Torino, 70:4 (2012), 469–495 | MR | Zbl
[23] J. J. Sylvester, “On subinvariants, i.e. semi-invariants to binary quantics of an unlimited order”, Amer. J. Math., 5:1 (1882), 79–136 | DOI | MR | Zbl