Mots-clés : Eulerian circuit
@article{SM_2022_213_12_a2,
author = {V. P. Ilyutko and D. P. Ilyutko},
title = {A~circle criterion for a~generalized cross graph in terms of minimal excluded minors},
journal = {Sbornik. Mathematics},
pages = {1665--1678},
year = {2022},
volume = {213},
number = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2022_213_12_a2/}
}
TY - JOUR AU - V. P. Ilyutko AU - D. P. Ilyutko TI - A circle criterion for a generalized cross graph in terms of minimal excluded minors JO - Sbornik. Mathematics PY - 2022 SP - 1665 EP - 1678 VL - 213 IS - 12 UR - http://geodesic.mathdoc.fr/item/SM_2022_213_12_a2/ LA - en ID - SM_2022_213_12_a2 ER -
V. P. Ilyutko; D. P. Ilyutko. A circle criterion for a generalized cross graph in terms of minimal excluded minors. Sbornik. Mathematics, Tome 213 (2022) no. 12, pp. 1665-1678. http://geodesic.mathdoc.fr/item/SM_2022_213_12_a2/
[1] N. Robertson and P. D. Seymour, “Graph minors. XX. Wagner's conjecture”, J. Combin. Theory Ser. B, 92:2 (2004), 325–357 | DOI | MR | Zbl
[2] A. Bouchet, “Circle graph obstructions”, J. Combin. Theory Ser. B, 60:1 (1994), 107–144 | DOI | MR | Zbl
[3] V. O. Manturov, “Framed 4-valent graph minor theory. I. Introduction. A planarity criterion and linkless embeddability”, J. Knot Theory Ramifications, 23:7 (2014), 1460002, 8 pp. | DOI | MR | Zbl
[4] V. O. Manturov, “Framed 4-valent graph minor theory. II. Special minors and new examples”, J. Knot Theory Ramifications, 24:13 (2015), 1541004, 12 pp. | DOI | MR | Zbl
[5] D. P. Ilyutko, “Framed $4$-graphs: Euler tours, Gauss circuits and rotating circuits”, Mat. Sb., 202:9 (2011), 53–76 ; English transl. in Sb. Math., 202:9 (2011), 1303–1326 | DOI | MR | Zbl | DOI
[6] D. P. Ilyutko and V. O. Manturov, “Introduction to graph-link theory”, J. Knot Theory Ramifications, 18:6 (2009), 791–823 | DOI | MR | Zbl
[7] I. Nikonov, “A new proof of Vassiliev's conjecture”, J. Knot Theory Ramifications, 23:7 (2014), 1460005, 28 pp. | DOI | MR | Zbl
[8] V. O. Manturov, “A proof of Vassiliev's conjecture on the planarity of singular links”, Izv. Ross. Akad. Nauk Ser. Mat., 69:5 (2005), 169–178 ; English transl. in Izv. Math., 69:5 (2005), 1025–1033 | DOI | MR | Zbl | DOI
[9] R. C. Read and P. Rosenstiehl, “On the Gauss crossing problem”, Combinatorics (Keszthely 1976), v. II, Colloq. Math. Soc. János Bolyai, 18, North-Holland, Amsterdam–New York, 1978, 843–876 | MR | Zbl
[10] J. Geelen and S. Oum, “Circle graph obstructions under pivoting”, J. Graph Theory, 61:1 (2009), 1–11 | DOI | MR | Zbl
[11] A. Kotzig, “Eulerian lines in finite $4$-valent graphs and their transformations”, Theory of graphs (Tihany 1966), Academic Press, New York, 1968, 219–230 | MR | Zbl
[12] V. O. Manturov and D. P. Ilyutko, Virtual knots. The state of the art, Ser. Knots Everything, 51, World Sci. Publ., Hackensack, NJ, 2013, xxvi+521 pp. | DOI | MR | Zbl
[13] D. P. Ilyutko and V. S. Safina, “Graph-links: nonrealizability, orientation, and Jones polynomial”, Topology, Sovr. Mat. Fundam. Napravl., 51, RUDN University, Moscow, 2013, 33–63 ; English transl. in J. Math. Sci. (N.Y.), 214:5 (2016), 632–664 | MR | Zbl | DOI
[14] A. Bouchet, “Graphic presentations of isotropic systems”, J. Combin. Theory Ser. B, 45:1 (1988), 58–76 | DOI | MR | Zbl