A circle criterion for a generalized cross graph in terms of minimal excluded minors
Sbornik. Mathematics, Tome 213 (2022) no. 12, pp. 1665-1678 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Geelen and Oum described classes of minimal excluded pivot-minors for a simple graph to be a circle graph and for a delta-matroid to be Eulerian. Pivot-equivalence classes of circle simple graphs and delta-matroids arise in the investigation of Eulerian cycles on cross graphs (4-valent graphs with cross structure). The results established by Geelen and Oum rely on some lemmas in their work, which are shown below to be not quite correct. We consider generalized cross graphs, which arise in the description of rotating circuits on cross graphs. For such graphs we derive a circle criterion: we reproduce and augment the arguments due to Geelen and Oum, and we improve some incorrectly formulated statements. As a result, we obtain the same list of 166 inequivalent graphs, the minimal excluded minors for a generalized cross graph to be a circle graph. Bibliography: 14 titles.
Keywords: cross graph, framed $4$-valent graph, chord diagram, rotating circuit, circle graph.
Mots-clés : Eulerian circuit
@article{SM_2022_213_12_a2,
     author = {V. P. Ilyutko and D. P. Ilyutko},
     title = {A~circle criterion for a~generalized cross graph in terms of minimal excluded minors},
     journal = {Sbornik. Mathematics},
     pages = {1665--1678},
     year = {2022},
     volume = {213},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2022_213_12_a2/}
}
TY  - JOUR
AU  - V. P. Ilyutko
AU  - D. P. Ilyutko
TI  - A circle criterion for a generalized cross graph in terms of minimal excluded minors
JO  - Sbornik. Mathematics
PY  - 2022
SP  - 1665
EP  - 1678
VL  - 213
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2022_213_12_a2/
LA  - en
ID  - SM_2022_213_12_a2
ER  - 
%0 Journal Article
%A V. P. Ilyutko
%A D. P. Ilyutko
%T A circle criterion for a generalized cross graph in terms of minimal excluded minors
%J Sbornik. Mathematics
%D 2022
%P 1665-1678
%V 213
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2022_213_12_a2/
%G en
%F SM_2022_213_12_a2
V. P. Ilyutko; D. P. Ilyutko. A circle criterion for a generalized cross graph in terms of minimal excluded minors. Sbornik. Mathematics, Tome 213 (2022) no. 12, pp. 1665-1678. http://geodesic.mathdoc.fr/item/SM_2022_213_12_a2/

[1] N. Robertson and P. D. Seymour, “Graph minors. XX. Wagner's conjecture”, J. Combin. Theory Ser. B, 92:2 (2004), 325–357 | DOI | MR | Zbl

[2] A. Bouchet, “Circle graph obstructions”, J. Combin. Theory Ser. B, 60:1 (1994), 107–144 | DOI | MR | Zbl

[3] V. O. Manturov, “Framed 4-valent graph minor theory. I. Introduction. A planarity criterion and linkless embeddability”, J. Knot Theory Ramifications, 23:7 (2014), 1460002, 8 pp. | DOI | MR | Zbl

[4] V. O. Manturov, “Framed 4-valent graph minor theory. II. Special minors and new examples”, J. Knot Theory Ramifications, 24:13 (2015), 1541004, 12 pp. | DOI | MR | Zbl

[5] D. P. Ilyutko, “Framed $4$-graphs: Euler tours, Gauss circuits and rotating circuits”, Mat. Sb., 202:9 (2011), 53–76 ; English transl. in Sb. Math., 202:9 (2011), 1303–1326 | DOI | MR | Zbl | DOI

[6] D. P. Ilyutko and V. O. Manturov, “Introduction to graph-link theory”, J. Knot Theory Ramifications, 18:6 (2009), 791–823 | DOI | MR | Zbl

[7] I. Nikonov, “A new proof of Vassiliev's conjecture”, J. Knot Theory Ramifications, 23:7 (2014), 1460005, 28 pp. | DOI | MR | Zbl

[8] V. O. Manturov, “A proof of Vassiliev's conjecture on the planarity of singular links”, Izv. Ross. Akad. Nauk Ser. Mat., 69:5 (2005), 169–178 ; English transl. in Izv. Math., 69:5 (2005), 1025–1033 | DOI | MR | Zbl | DOI

[9] R. C. Read and P. Rosenstiehl, “On the Gauss crossing problem”, Combinatorics (Keszthely 1976), v. II, Colloq. Math. Soc. János Bolyai, 18, North-Holland, Amsterdam–New York, 1978, 843–876 | MR | Zbl

[10] J. Geelen and S. Oum, “Circle graph obstructions under pivoting”, J. Graph Theory, 61:1 (2009), 1–11 | DOI | MR | Zbl

[11] A. Kotzig, “Eulerian lines in finite $4$-valent graphs and their transformations”, Theory of graphs (Tihany 1966), Academic Press, New York, 1968, 219–230 | MR | Zbl

[12] V. O. Manturov and D. P. Ilyutko, Virtual knots. The state of the art, Ser. Knots Everything, 51, World Sci. Publ., Hackensack, NJ, 2013, xxvi+521 pp. | DOI | MR | Zbl

[13] D. P. Ilyutko and V. S. Safina, “Graph-links: nonrealizability, orientation, and Jones polynomial”, Topology, Sovr. Mat. Fundam. Napravl., 51, RUDN University, Moscow, 2013, 33–63 ; English transl. in J. Math. Sci. (N.Y.), 214:5 (2016), 632–664 | MR | Zbl | DOI

[14] A. Bouchet, “Graphic presentations of isotropic systems”, J. Combin. Theory Ser. B, 45:1 (1988), 58–76 | DOI | MR | Zbl