Realization of geodesic flows with a linear first integral by billiards with slipping
Sbornik. Mathematics, Tome 213 (2022) no. 12, pp. 1645-1664 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An arbitrary geodesic flow on the projective plane or Klein bottle with an additional, linear in the momentum, first integral is modelled using billiards with slipping on table complexes. The requisite table of a circular topological billiard with slipping is constructed algorithmically. Furthermore, linear integrals of geodesic flows can be reduced to the same canonical integral of a circular planar billiard. Bibliography: 36 titles.
Keywords: integrable system, geodesic flow, topological invariant.
Mots-clés : billiard, Liouville foliation
@article{SM_2022_213_12_a1,
     author = {V. V. Vedyushkina and V. N. Zav'yalov},
     title = {Realization of geodesic flows with a~linear first integral by billiards with slipping},
     journal = {Sbornik. Mathematics},
     pages = {1645--1664},
     year = {2022},
     volume = {213},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2022_213_12_a1/}
}
TY  - JOUR
AU  - V. V. Vedyushkina
AU  - V. N. Zav'yalov
TI  - Realization of geodesic flows with a linear first integral by billiards with slipping
JO  - Sbornik. Mathematics
PY  - 2022
SP  - 1645
EP  - 1664
VL  - 213
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2022_213_12_a1/
LA  - en
ID  - SM_2022_213_12_a1
ER  - 
%0 Journal Article
%A V. V. Vedyushkina
%A V. N. Zav'yalov
%T Realization of geodesic flows with a linear first integral by billiards with slipping
%J Sbornik. Mathematics
%D 2022
%P 1645-1664
%V 213
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2022_213_12_a1/
%G en
%F SM_2022_213_12_a1
V. V. Vedyushkina; V. N. Zav'yalov. Realization of geodesic flows with a linear first integral by billiards with slipping. Sbornik. Mathematics, Tome 213 (2022) no. 12, pp. 1645-1664. http://geodesic.mathdoc.fr/item/SM_2022_213_12_a1/

[1] A. V. Bolsinov and A. T. Fomenko, Integrable Hamiltonian systems. Geometry, topology, classification, v. 1, 2, Udmurtian University Publishing House, Izhevsk, 1999, 444 pp., 447 pp. ; English transl., Chapman Hall/CRC, Boca Raton, FL, 2004, xvi+730 pp. | MR | Zbl | DOI | MR | Zbl

[2] V. V. Kozlov, “Topological obstructions to the integrability of natural mechanical systems”, Dokl. Akad. Nauk SSSR, 249:6 (1979), 1299–1302 ; English transl. in Soviet Math. Dokl., 20:6 (1979), 1413–1415 | MR | Zbl

[3] V. V. Kozlov, Symmetries, topology and resonances in Hamiltonian mechanics, Udmurtian University Publishing House, Izhevsk, 1995, 429 pp. ; English transl., Ergeb. Math. Grenzgeb. (3), 31, Springer-Verlag, Berlin, 1996, xii+378 pp. | MR | Zbl | DOI | MR | Zbl

[4] A. V. Bolsinov, V. S. Matveev and A. T. Fomenko, “Two-dimensional Riemannian metrics with integrable geodesic flows. Local and global geometry”, Mat. Sb., 189:10 (1998), 5–32 ; English transl. in Sb. Math., 189:10 (1998), 1441–1466 | DOI | MR | Zbl | DOI

[5] V. N. Kolokol'tsov, “Geodesic flows on two-dimensional manifolds with an additional first integral that is polynomial in the velocities”, Izv. Akad. Nauk SSSR Ser. Mat., 46:5 (1982), 994–1010 ; English transl. in Izv. Math., 21:2 (1983), 291–306 | MR | Zbl | DOI

[6] I. K. Babenko and N. N. Nekhoroshev, “On complex structures on two-dimensional tori admitting metrics with nontrivial quadratic integral”, Mat. Zametki, 58:5 (1995), 643–652 ; English transl. in Math. Notes, 58:5 (1995), 1129–1135 | MR | Zbl | DOI

[7] A. T. Fomenko and V. V. Vedyushkina, “Billiards and integrability in geometry and physics. New scope and new potential”, Vestn. Moskov. Univ. Ser. 1 Mat. Mekh., 2019, no. 3, 15–25 ; English transl. in Moscow Univ. Math. Bull., 74:3 (2019), 98–107 | MR | Zbl | DOI

[8] A. T. Fomenko, V. V. Vedyushkina and V. N. Zav'yalov, “Liouville foliations of topological billiards with slipping”, Russ. J. Math. Phys., 28:1 (2021), 37–55 | DOI | MR | Zbl

[9] V. V. Fokicheva, “A topological classification of billiards in locally planar domains bounded by arcs of confocal quadrics”, Mat. Sb., 206:10 (2015), 127–176 ; English transl. in Sb. Math., 206:10 (2015), 1463–1507 | DOI | MR | Zbl | DOI

[10] V. V. Vedyushkina, A. T. Fomenko and I. S. Kharcheva, “Modeling nondegenerate bifurcations of closures of solutions for integrable systems with two degrees of freedom by integrable topological billiards”, Dokl. Ross. Akad. Nauk, 479:6 (2018), 607–610 ; English transl. in Dokl. Math., 97:2 (2018), 174–176 | DOI | MR | Zbl | DOI

[11] V. V. Fokicheva (Vedyushkina), Topological classification of integrable billiards, Kandidat dissertation, Moscow State University, Moscow, 2016, 130 pp. (Russian) https://istina.msu.ru/dissertations/19274499/

[12] S. E. Pustovoitov, “Topological analysis of a billiard bounded by confocal quadrics in a potential field”, Mat. Sb., 212:2 (2021), 81–105 ; English transl. in Sb. Math., 212:2 (2021), 211–233 | DOI | MR | Zbl | DOI

[13] A. T. Fomenko and V. V. Vedyushkina, “Implementation of integrable systems by topological, geodesic billiards with potential and magnetic field”, Russ. J. Math. Phys., 26:3 (2019), 320–333 | DOI | MR | Zbl

[14] E. E. Karginova, “Billiards bounded by arcs of confocal quadrics on the Minkowski plane”, Mat. Sb., 211:1 (2020), 3–31 ; English transl. in Sb. Math., 211:1 (2020), 1–28 | DOI | MR | Zbl | DOI

[15] V. V. Vedyushkina and A. I. Skvortsov, “Topology of integrable billiard in an ellipse in the Minkowski plane with the Hooke potential”, Vestn. Moskov. Univ. Ser. 1 Mat. Mekh., 2022, no. 1, 8–19 ; English transl. in Moscow Univ. Math. Bull., 77:1 (2022), 7–19 | MR | Zbl | DOI

[16] G. V. Belozerov, “Topological classification of integrable geodesic billiards on quadrics in three-dimensional Euclidean space”, Mat. Sb., 211:11 (2020), 3–40 ; English transl. in Sb. Math., 211:11 (2020), 1503–1538 | DOI | MR | Zbl | DOI

[17] G. V. Belozerov, “Topological classification of billiards bounded by confocal quadrics in three-dimensional Euclidean space”, Mat. Sb., 213:2 (2022), 3–36 ; English transl. in Sb. Math., 213:2 (2022), 129–160 | DOI | MR | Zbl | DOI

[18] V. V. Vedyushkina and I. S. Kharcheva, “Billiard books model all three-dimensional bifurcations of integrable Hamiltonian systems”, Mat. Sb., 209:12 (2018), 17–56 ; English transl. in Sb. Math., 209:12 (2018), 1690–1727 | DOI | MR | Zbl | DOI

[19] V. V. Vedyushkina, Integrable billiards on CW-complexes and integrable Hamiltonian systems, DSc dissertation, Moscow State University, Moscow, 2020, 284 pp. (Russian) https://istina.msu.ru/dissertations/286451634/

[20] V. A. Kibkalo, A. T. Fomenko and I. S. Kharcheva, “Realizing integrable Hamiltonian systems by means of billiard books”, Tr. Mosk. Mat. Obshch., 82, no. 1, Moscow Center for Continuous Mathematical Education, Moscow, 2021, 45–78 ; English transl. in Trans. Moscow Math. Soc., 82:1 (2021), 37–64 | Zbl | DOI | MR

[21] V. V. Vedyushkina, V. A. Kibkalo and A. T. Fomenko, “Topological modeling of integrable systems by billiards: realization of numerical invariants”, Dokl. Ross. Akad. Nauk Mat. Inform. Protsessy Upr., 493 (2020), 9–12 ; English transl. in Dokl. Math., 102:1 (2020), 269–271 | DOI | Zbl | DOI | MR

[22] V. V. Vedyushkina and V. A. Kibkalo, “Realization of the numerical invariant of the Seifert fibration of integrable systems by billiards”, Vestn. Moskov. Univ. Ser. 1 Mat. Mekh., 2020, no. 4, 22–28 ; English transl. in Moscow Univ. Math. Bull., 75:4 (2020), 161–168 | MR | Zbl | DOI

[23] V. V. Vedyushkina, “Local modeling of Liouville foliations by billiards: implementation of edge invariants”, Vestn. Moskov. Univ. Ser. 1 Mat. Mekh., 2021, no. 2, 28–32 ; English transl. in Moscow Univ. Math. Bull., 76:2 (2021), 60–64 | MR | Zbl | DOI

[24] V. V. Vedyushkina and V. A. Kibkalo, “Billiard books of low complexity and realization of Liouville foliations of integrable systems”, Chebyshevskii Sb., 23:1 (2022), 53–82 (Russian) | DOI | MR

[25] V. V. Vedyushkina, “Topological type of isoenergy surfaces of billiard books”, Mat. Sb., 212:12 (2021), 3–19 ; English transl. in Sb. Math., 212:12 (2021), 1660–1674 | DOI | MR | Zbl | DOI

[26] A. T. Fomenko and S. V. Matveev, Algorithmic and computer methods for three-manifolds, Moscow State University Publishing House, Moscow, 1991, 303 pp. ; English transl., Math. Appl., 425, Kluwer Acad. Publ., Dordrecht, 1997, xii+334 pp. | MR | Zbl | DOI | MR | Zbl

[27] V. V. Vedyushkina (Fokicheva) and A. T. Fomenko, “Integrable geodesic flows on orientable two-dimensional surfaces and topological billiards”, Izv. Ross. Akad. Nauk Ser. Mat., 83:6 (2019), 63–103 ; English transl. in Izv. Math., 83:6 (2019), 1137–1173 | DOI | MR | Zbl | DOI

[28] V. V. Fokicheva (Vedyushkina) and A. T. Fomenko, “Integrable billiards model important integrable cases of rigid body dynamics”, Dokl. Ross. Akad. Nauk, 465:2 (2015), 150–153 ; English transl. in Dokl. Math., 92:3 (2015), 682–684 | DOI | MR | Zbl | DOI

[29] V. V. Vedyushkina (Fokicheva) and A. T. Fomenko, “Integrable topological billiards and equivalent dynamical systems”, Izv. Ross. Akad. Nauk Ser. Mat., 81:4 (2017), 20–67 ; English transl. in Izv. Math., 81:4 (2017), 688–733 | DOI | MR | Zbl | DOI

[30] V. V. Vedyushkina, “The Liouville foliation of the billiard book modelling the Goryachev-Chaplygin case”, Vestn. Moskov. Univ. Ser. 1 Mat. Mekh., 2020, no. 1, 64–68 ; English transl. in Moscow Univ. Math. Bull., 75:1 (2020), 42–46 | MR | Zbl | DOI

[31] A. T. Fomenko and V. V. Vedyushkina, “Billiards with changing geometry and their connection with the implementation of the Zhukovsky and Kovalevskaya cases”, Russ. J. Math. Phys., 28:3 (2021), 317–332 | DOI | MR | Zbl

[32] A. T. Fomenko and V. V. Vedyushkina, “Evolutionary force billiards”, Izv. Ross. Akad. Nauk, 86:5 (2022), 116–156 ; English transl. in Izv. Mat., 86:5 (2022), 943–979 | DOI | DOI

[33] A. T. Fomenko and V. V. Vedyushkina, “Force evolutionary billiards and billiard equivalence of the Euler and Lagrange cases”, Dokl. Ross. Akad. Nauk. Mat. Inform. Protsessy Upr., 496 (2021), 5–9 ; English transl. in Dokl. Math., 103:1 (2021), 1–4 | DOI | Zbl | DOI | MR

[34] V. A. Kibkalo, “Billiards with potential model a series of 4-dimensional singularities of integrable systems”, Current problems in mathematics and mechanics, v. 2, MAKS Press, Moscow, 2019, 563–566 (Russian)

[35] A. T. Fomenko and V. A. Kibkalo, “Saddle singularities in integrable Hamiltonian systems: examples and algorithms”, Contemporary approaches and methods in fundamental mathematics and mechanics, Underst. Complex Syst., Springer, Cham, 2021, 3–26 | DOI | MR | Zbl

[36] V. V. Vedyushkina, V. A. Kibkalo and S. E. Pustovoitov, “Realization of focal singularities of integrable systems using billiard books with a Hooke potential field”, Chebyshevskii Sb., 22:5 (2021), 44–57 | DOI | MR