Mots-clés : billiard, Liouville foliation
@article{SM_2022_213_12_a1,
author = {V. V. Vedyushkina and V. N. Zav'yalov},
title = {Realization of geodesic flows with a~linear first integral by billiards with slipping},
journal = {Sbornik. Mathematics},
pages = {1645--1664},
year = {2022},
volume = {213},
number = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2022_213_12_a1/}
}
TY - JOUR AU - V. V. Vedyushkina AU - V. N. Zav'yalov TI - Realization of geodesic flows with a linear first integral by billiards with slipping JO - Sbornik. Mathematics PY - 2022 SP - 1645 EP - 1664 VL - 213 IS - 12 UR - http://geodesic.mathdoc.fr/item/SM_2022_213_12_a1/ LA - en ID - SM_2022_213_12_a1 ER -
V. V. Vedyushkina; V. N. Zav'yalov. Realization of geodesic flows with a linear first integral by billiards with slipping. Sbornik. Mathematics, Tome 213 (2022) no. 12, pp. 1645-1664. http://geodesic.mathdoc.fr/item/SM_2022_213_12_a1/
[1] A. V. Bolsinov and A. T. Fomenko, Integrable Hamiltonian systems. Geometry, topology, classification, v. 1, 2, Udmurtian University Publishing House, Izhevsk, 1999, 444 pp., 447 pp. ; English transl., Chapman Hall/CRC, Boca Raton, FL, 2004, xvi+730 pp. | MR | Zbl | DOI | MR | Zbl
[2] V. V. Kozlov, “Topological obstructions to the integrability of natural mechanical systems”, Dokl. Akad. Nauk SSSR, 249:6 (1979), 1299–1302 ; English transl. in Soviet Math. Dokl., 20:6 (1979), 1413–1415 | MR | Zbl
[3] V. V. Kozlov, Symmetries, topology and resonances in Hamiltonian mechanics, Udmurtian University Publishing House, Izhevsk, 1995, 429 pp. ; English transl., Ergeb. Math. Grenzgeb. (3), 31, Springer-Verlag, Berlin, 1996, xii+378 pp. | MR | Zbl | DOI | MR | Zbl
[4] A. V. Bolsinov, V. S. Matveev and A. T. Fomenko, “Two-dimensional Riemannian metrics with integrable geodesic flows. Local and global geometry”, Mat. Sb., 189:10 (1998), 5–32 ; English transl. in Sb. Math., 189:10 (1998), 1441–1466 | DOI | MR | Zbl | DOI
[5] V. N. Kolokol'tsov, “Geodesic flows on two-dimensional manifolds with an additional first integral that is polynomial in the velocities”, Izv. Akad. Nauk SSSR Ser. Mat., 46:5 (1982), 994–1010 ; English transl. in Izv. Math., 21:2 (1983), 291–306 | MR | Zbl | DOI
[6] I. K. Babenko and N. N. Nekhoroshev, “On complex structures on two-dimensional tori admitting metrics with nontrivial quadratic integral”, Mat. Zametki, 58:5 (1995), 643–652 ; English transl. in Math. Notes, 58:5 (1995), 1129–1135 | MR | Zbl | DOI
[7] A. T. Fomenko and V. V. Vedyushkina, “Billiards and integrability in geometry and physics. New scope and new potential”, Vestn. Moskov. Univ. Ser. 1 Mat. Mekh., 2019, no. 3, 15–25 ; English transl. in Moscow Univ. Math. Bull., 74:3 (2019), 98–107 | MR | Zbl | DOI
[8] A. T. Fomenko, V. V. Vedyushkina and V. N. Zav'yalov, “Liouville foliations of topological billiards with slipping”, Russ. J. Math. Phys., 28:1 (2021), 37–55 | DOI | MR | Zbl
[9] V. V. Fokicheva, “A topological classification of billiards in locally planar domains bounded by arcs of confocal quadrics”, Mat. Sb., 206:10 (2015), 127–176 ; English transl. in Sb. Math., 206:10 (2015), 1463–1507 | DOI | MR | Zbl | DOI
[10] V. V. Vedyushkina, A. T. Fomenko and I. S. Kharcheva, “Modeling nondegenerate bifurcations of closures of solutions for integrable systems with two degrees of freedom by integrable topological billiards”, Dokl. Ross. Akad. Nauk, 479:6 (2018), 607–610 ; English transl. in Dokl. Math., 97:2 (2018), 174–176 | DOI | MR | Zbl | DOI
[11] V. V. Fokicheva (Vedyushkina), Topological classification of integrable billiards, Kandidat dissertation, Moscow State University, Moscow, 2016, 130 pp. (Russian) https://istina.msu.ru/dissertations/19274499/
[12] S. E. Pustovoitov, “Topological analysis of a billiard bounded by confocal quadrics in a potential field”, Mat. Sb., 212:2 (2021), 81–105 ; English transl. in Sb. Math., 212:2 (2021), 211–233 | DOI | MR | Zbl | DOI
[13] A. T. Fomenko and V. V. Vedyushkina, “Implementation of integrable systems by topological, geodesic billiards with potential and magnetic field”, Russ. J. Math. Phys., 26:3 (2019), 320–333 | DOI | MR | Zbl
[14] E. E. Karginova, “Billiards bounded by arcs of confocal quadrics on the Minkowski plane”, Mat. Sb., 211:1 (2020), 3–31 ; English transl. in Sb. Math., 211:1 (2020), 1–28 | DOI | MR | Zbl | DOI
[15] V. V. Vedyushkina and A. I. Skvortsov, “Topology of integrable billiard in an ellipse in the Minkowski plane with the Hooke potential”, Vestn. Moskov. Univ. Ser. 1 Mat. Mekh., 2022, no. 1, 8–19 ; English transl. in Moscow Univ. Math. Bull., 77:1 (2022), 7–19 | MR | Zbl | DOI
[16] G. V. Belozerov, “Topological classification of integrable geodesic billiards on quadrics in three-dimensional Euclidean space”, Mat. Sb., 211:11 (2020), 3–40 ; English transl. in Sb. Math., 211:11 (2020), 1503–1538 | DOI | MR | Zbl | DOI
[17] G. V. Belozerov, “Topological classification of billiards bounded by confocal quadrics in three-dimensional Euclidean space”, Mat. Sb., 213:2 (2022), 3–36 ; English transl. in Sb. Math., 213:2 (2022), 129–160 | DOI | MR | Zbl | DOI
[18] V. V. Vedyushkina and I. S. Kharcheva, “Billiard books model all three-dimensional bifurcations of integrable Hamiltonian systems”, Mat. Sb., 209:12 (2018), 17–56 ; English transl. in Sb. Math., 209:12 (2018), 1690–1727 | DOI | MR | Zbl | DOI
[19] V. V. Vedyushkina, Integrable billiards on CW-complexes and integrable Hamiltonian systems, DSc dissertation, Moscow State University, Moscow, 2020, 284 pp. (Russian) https://istina.msu.ru/dissertations/286451634/
[20] V. A. Kibkalo, A. T. Fomenko and I. S. Kharcheva, “Realizing integrable Hamiltonian systems by means of billiard books”, Tr. Mosk. Mat. Obshch., 82, no. 1, Moscow Center for Continuous Mathematical Education, Moscow, 2021, 45–78 ; English transl. in Trans. Moscow Math. Soc., 82:1 (2021), 37–64 | Zbl | DOI | MR
[21] V. V. Vedyushkina, V. A. Kibkalo and A. T. Fomenko, “Topological modeling of integrable systems by billiards: realization of numerical invariants”, Dokl. Ross. Akad. Nauk Mat. Inform. Protsessy Upr., 493 (2020), 9–12 ; English transl. in Dokl. Math., 102:1 (2020), 269–271 | DOI | Zbl | DOI | MR
[22] V. V. Vedyushkina and V. A. Kibkalo, “Realization of the numerical invariant of the Seifert fibration of integrable systems by billiards”, Vestn. Moskov. Univ. Ser. 1 Mat. Mekh., 2020, no. 4, 22–28 ; English transl. in Moscow Univ. Math. Bull., 75:4 (2020), 161–168 | MR | Zbl | DOI
[23] V. V. Vedyushkina, “Local modeling of Liouville foliations by billiards: implementation of edge invariants”, Vestn. Moskov. Univ. Ser. 1 Mat. Mekh., 2021, no. 2, 28–32 ; English transl. in Moscow Univ. Math. Bull., 76:2 (2021), 60–64 | MR | Zbl | DOI
[24] V. V. Vedyushkina and V. A. Kibkalo, “Billiard books of low complexity and realization of Liouville foliations of integrable systems”, Chebyshevskii Sb., 23:1 (2022), 53–82 (Russian) | DOI | MR
[25] V. V. Vedyushkina, “Topological type of isoenergy surfaces of billiard books”, Mat. Sb., 212:12 (2021), 3–19 ; English transl. in Sb. Math., 212:12 (2021), 1660–1674 | DOI | MR | Zbl | DOI
[26] A. T. Fomenko and S. V. Matveev, Algorithmic and computer methods for three-manifolds, Moscow State University Publishing House, Moscow, 1991, 303 pp. ; English transl., Math. Appl., 425, Kluwer Acad. Publ., Dordrecht, 1997, xii+334 pp. | MR | Zbl | DOI | MR | Zbl
[27] V. V. Vedyushkina (Fokicheva) and A. T. Fomenko, “Integrable geodesic flows on orientable two-dimensional surfaces and topological billiards”, Izv. Ross. Akad. Nauk Ser. Mat., 83:6 (2019), 63–103 ; English transl. in Izv. Math., 83:6 (2019), 1137–1173 | DOI | MR | Zbl | DOI
[28] V. V. Fokicheva (Vedyushkina) and A. T. Fomenko, “Integrable billiards model important integrable cases of rigid body dynamics”, Dokl. Ross. Akad. Nauk, 465:2 (2015), 150–153 ; English transl. in Dokl. Math., 92:3 (2015), 682–684 | DOI | MR | Zbl | DOI
[29] V. V. Vedyushkina (Fokicheva) and A. T. Fomenko, “Integrable topological billiards and equivalent dynamical systems”, Izv. Ross. Akad. Nauk Ser. Mat., 81:4 (2017), 20–67 ; English transl. in Izv. Math., 81:4 (2017), 688–733 | DOI | MR | Zbl | DOI
[30] V. V. Vedyushkina, “The Liouville foliation of the billiard book modelling the Goryachev-Chaplygin case”, Vestn. Moskov. Univ. Ser. 1 Mat. Mekh., 2020, no. 1, 64–68 ; English transl. in Moscow Univ. Math. Bull., 75:1 (2020), 42–46 | MR | Zbl | DOI
[31] A. T. Fomenko and V. V. Vedyushkina, “Billiards with changing geometry and their connection with the implementation of the Zhukovsky and Kovalevskaya cases”, Russ. J. Math. Phys., 28:3 (2021), 317–332 | DOI | MR | Zbl
[32] A. T. Fomenko and V. V. Vedyushkina, “Evolutionary force billiards”, Izv. Ross. Akad. Nauk, 86:5 (2022), 116–156 ; English transl. in Izv. Mat., 86:5 (2022), 943–979 | DOI | DOI
[33] A. T. Fomenko and V. V. Vedyushkina, “Force evolutionary billiards and billiard equivalence of the Euler and Lagrange cases”, Dokl. Ross. Akad. Nauk. Mat. Inform. Protsessy Upr., 496 (2021), 5–9 ; English transl. in Dokl. Math., 103:1 (2021), 1–4 | DOI | Zbl | DOI | MR
[34] V. A. Kibkalo, “Billiards with potential model a series of 4-dimensional singularities of integrable systems”, Current problems in mathematics and mechanics, v. 2, MAKS Press, Moscow, 2019, 563–566 (Russian)
[35] A. T. Fomenko and V. A. Kibkalo, “Saddle singularities in integrable Hamiltonian systems: examples and algorithms”, Contemporary approaches and methods in fundamental mathematics and mechanics, Underst. Complex Syst., Springer, Cham, 2021, 3–26 | DOI | MR | Zbl
[36] V. V. Vedyushkina, V. A. Kibkalo and S. E. Pustovoitov, “Realization of focal singularities of integrable systems using billiard books with a Hooke potential field”, Chebyshevskii Sb., 22:5 (2021), 44–57 | DOI | MR