Controllability of difference approximation for a control system with continuous time
Sbornik. Mathematics, Tome 213 (2022) no. 12, pp. 1620-1644 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a control system with continuous time a discrete control system approximating it is constructed and shown to be locally controllable with respect to a trajectory admissible for the continuous system in question. Examples illustrating this result are given. Bibliography: 10 titles.
Keywords: control system, control system with discrete time, local controllability.
@article{SM_2022_213_12_a0,
     author = {E. R. Avakov and G. G. Magaril-Il'yaev},
     title = {Controllability of difference approximation for a~control system with continuous time},
     journal = {Sbornik. Mathematics},
     pages = {1620--1644},
     year = {2022},
     volume = {213},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2022_213_12_a0/}
}
TY  - JOUR
AU  - E. R. Avakov
AU  - G. G. Magaril-Il'yaev
TI  - Controllability of difference approximation for a control system with continuous time
JO  - Sbornik. Mathematics
PY  - 2022
SP  - 1620
EP  - 1644
VL  - 213
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2022_213_12_a0/
LA  - en
ID  - SM_2022_213_12_a0
ER  - 
%0 Journal Article
%A E. R. Avakov
%A G. G. Magaril-Il'yaev
%T Controllability of difference approximation for a control system with continuous time
%J Sbornik. Mathematics
%D 2022
%P 1620-1644
%V 213
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2022_213_12_a0/
%G en
%F SM_2022_213_12_a0
E. R. Avakov; G. G. Magaril-Il'yaev. Controllability of difference approximation for a control system with continuous time. Sbornik. Mathematics, Tome 213 (2022) no. 12, pp. 1620-1644. http://geodesic.mathdoc.fr/item/SM_2022_213_12_a0/

[1] R. G. Faradzhev, P. V. Ngok and A. V. Shapiro, “Controllability theory of discrete dynamic systems”, Avtomat. i Telemekh., 1 (1986), 5–24 ; English transl. in Autom. Remote Control, 47 (1986), 1–20 | MR | Zbl

[2] M. Barbero-Linán and B. Jakubczyk, “Second order conditions for optimality and local controllability of discrete-time systems”, SIAM J. Control Optim., 53:1 (2015), 352–377 | DOI | MR | Zbl

[3] E. V. Duda, A. I. Korzun and O. Yu. Minchenko, “On the local controllability of discrete systems”, Differ. Uravn., 33:4 (1997), 462–469 ; English transl. in Differ. Equ., 33:4 (1997), 461–468 | MR | Zbl

[4] E. R. Avakov and G. G. Magaril-Il'yaev, “Relaxation and controllability in optimal control problems”, Mat. Sb., 208:5 (2017), 3–37 ; English transl. in Sb. Math., 208:5 (2017), 585–619 | DOI | MR | Zbl | DOI

[5] A. A. Agrachev and Yu. L. Sachkov, Control theory from the geometric viewpoint, Encyclopaedia Math. Sci., 87, Control theory and optimization, II, Springer-Verlag, Berlin, 2004, xiv+412 pp. | DOI | MR | Zbl

[6] A. D. Ioffe and V. M. Tihomirov, Theory of extremal problems, Nauka, Moscow, 1974, 479 pp. ; English transl., Stud. Math. Appl., 6, North-Holland Publishing Co., Amsterdam–New York, 1979, xii+460 pp. | MR | Zbl | MR | Zbl

[7] B. Sh. Mordukhovich, “An approximate maximum principle for finite-difference control systems”, Zh. Vychisl. Mat. Mat. Fiz., 28:2 (1988), 163–177 ; English transl. in Comput. Math. Math. Phys., 28:1 (1988), 106–114 | MR | Zbl | DOI

[8] E. R. Avakov and G. G. Magaril-Il'yaev, “Local infimum and a family of maximum principles in optimal control”, Mat. Sb., 211:6 (2020), 3–39 ; English transl. in Sb. Math., 211:6 (2020), 750–785 | DOI | MR | Zbl | DOI

[9] R. V. Gamkrelidze, Principles of optimal control theory, 3d revised ed., URSS, Moscow, 2019, 200 pp.; English transl. of 2nd ed., Math. Concepts Methods Sci. Eng., 7, Rev. ed., Plenum Press, New York–London, 1978, xii+175 pp. | DOI | MR | Zbl

[10] E. R. Avakov and G. G. Magaril-Il'yaev, “Local controllability and optimality”, Mat. Sb., 212:7 (2021), 3–38 ; English transl. in Sb. Math., 212:7 (2021), 887–920 | DOI | MR | Zbl | DOI