Controllability of difference approximation for a~control system with continuous time
Sbornik. Mathematics, Tome 213 (2022) no. 12, pp. 1620-1644

Voir la notice de l'article provenant de la source Math-Net.Ru

For a control system with continuous time a discrete control system approximating it is constructed and shown to be locally controllable with respect to a trajectory admissible for the continuous system in question. Examples illustrating this result are given. Bibliography: 10 titles.
Keywords: control system, control system with discrete time, local controllability.
@article{SM_2022_213_12_a0,
     author = {E. R. Avakov and G. G. Magaril-Il'yaev},
     title = {Controllability of difference approximation for a~control system with continuous time},
     journal = {Sbornik. Mathematics},
     pages = {1620--1644},
     publisher = {mathdoc},
     volume = {213},
     number = {12},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2022_213_12_a0/}
}
TY  - JOUR
AU  - E. R. Avakov
AU  - G. G. Magaril-Il'yaev
TI  - Controllability of difference approximation for a~control system with continuous time
JO  - Sbornik. Mathematics
PY  - 2022
SP  - 1620
EP  - 1644
VL  - 213
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2022_213_12_a0/
LA  - en
ID  - SM_2022_213_12_a0
ER  - 
%0 Journal Article
%A E. R. Avakov
%A G. G. Magaril-Il'yaev
%T Controllability of difference approximation for a~control system with continuous time
%J Sbornik. Mathematics
%D 2022
%P 1620-1644
%V 213
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2022_213_12_a0/
%G en
%F SM_2022_213_12_a0
E. R. Avakov; G. G. Magaril-Il'yaev. Controllability of difference approximation for a~control system with continuous time. Sbornik. Mathematics, Tome 213 (2022) no. 12, pp. 1620-1644. http://geodesic.mathdoc.fr/item/SM_2022_213_12_a0/