@article{SM_2022_213_11_a7,
author = {A. B. Sukhov},
title = {On holomorphic mappings of strictly pseudoconvex domains},
journal = {Sbornik. Mathematics},
pages = {1597--1619},
year = {2022},
volume = {213},
number = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2022_213_11_a7/}
}
A. B. Sukhov. On holomorphic mappings of strictly pseudoconvex domains. Sbornik. Mathematics, Tome 213 (2022) no. 11, pp. 1597-1619. http://geodesic.mathdoc.fr/item/SM_2022_213_11_a7/
[1] E. Bedford and S. I. Pinchuk, “Convex domains with noncompact automorphism groups”, Mat. Sb., 185:5 (1994), 3–26 ; English transl. in Sb. Math., 82:1 (1995), 1–20 | MR | Zbl | DOI
[2] F. Berteloot, “Characterization of models in $\mathbb C^2$ by their automorphism groups”, Internat. J. Math., 5:5 (1994), 619–634 | DOI | MR | Zbl
[3] D. Burns, Jr. and S. Shnider, “Geometry of hypersurfaces and mapping theorems in $\mathbf C^n$”, Comment. Math. Helv., 54:2 (1979), 199–217 | DOI | MR | Zbl
[4] É. Cartan, “Sur la géométrie pseudo-conforme des hypersurfaces de l'espace de deux variables complexes”, Ann. Mat. Pura Appl., 11:1 (1933), 17–90 | DOI | MR | Zbl
[5] S. S. Chern and J. K. Moser, “Real hypersurfaces in complex manifolds”, Acta Math., 133 (1974), 219–271 | DOI | MR | Zbl
[6] E. M. Chirka, B. Coupet and A. B. Sukhov, “On boundary regularity of analytic discs”, Michigan Math. J., 46:2 (1999), 271–279 | DOI | MR | Zbl
[7] B. Coupet and A. Sukhov, “On the boundary rigidity phenomenon for automorphisms of domains in $\mathbb C^n$”, Proc. Amer. Math. Soc., 124:11 (1996), 3371–3380 | DOI | MR | Zbl
[8] E. M. Chirka, “Regularity of the boundaries of analytic sets”, Mat. Sb., 117(159):3 (1982), 291–336 ; English transl. in Sb. Math., 45:3 (1983), 291–335 | MR | Zbl | DOI
[9] E. M. Chirka, B. Coupet and A. B. Sukhov, “On boundary regularity of analytic discs”, Michigan Math. J., 46:2 (1999), 271–279 | DOI | MR | Zbl
[10] Ch. Fefferman, “The Bergman kernel and biholomorphic mappings of pseudoconvex domains”, Invent. Math., 26 (1974), 1–65 | DOI | MR | Zbl
[11] A. M. Efimov, “Extension of the Wong-Rosay theorem to the unbounded case”, Mat. Sb., 186:7 (1995), 41–50 ; English transl. in Sb. Math., 186:7 (1995), 967–976 | MR | Zbl | DOI
[12] S. Frankel, “Complex geometry of convex domains that cover varieties”, Acta Math., 163:1–2 (1989), 109–149 | DOI | MR | Zbl
[13] S. Frankel, “Applications of affine geometry to geometric function theory in several complex variables. I. Convergent rescalings and intrinsic quasi-isometric structure”, Several complex variables and complex geometry, Part 2 (Santa Cruz, CA 1989), Proc. Sympos. Pure Math., 52, Part 2, Amer. Math. Soc., Providence, RI, 1991, 183–208 | DOI | MR | Zbl
[14] I. Graham, “Sharp constants for the Koebe theorem and for estimates of intrinsic metrics on convex domains”, Several complex variables and complex geometry, Part 2 (Santa Cruz, CA 1989), Proc. Sympos. Pure Math., 52, Part 2, Amer. Math. Soc., Providence, RI, 1991, 233–238 | DOI | MR | Zbl
[15] F. R. Harvey and R. O. Wells, Jr., “Zero sets of non-negative strictly plurisubharmonic functions”, Math. Ann., 201 (1973), 165–170 | DOI | MR | Zbl
[16] G. M. Henkin, “An analytic polyhedron is not holomorphically equivalent to a strictly pseudoconvex domain”, Dokl. Akad. Nauk SSSR, 210:5 (1973), 1026–1029 ; English transl. in Soviet Math. Dokl., 14 (1973), 858–862 | MR | Zbl
[17] G. M. Henkin and E. M. Chirka, “Boundary properties of holomorphic functions of several complex variables”, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat., 4, VINITI, Moscow, 1975, 13–142 ; English transl. in J. Soviet Math., 5:5 (1976), 612–687 | MR | Zbl | DOI
[18] Yu. V. Khurumov, “Boundary smoothness of proper holomorphic mappings of strictly pseudoconvex domains”, Mat. Zametki, 48:6 (1990), 149–150 (Russian) | MR | Zbl
[19] Yu. V. Khurumov, “On Lindelöf's theorem in $\mathbf C^n$”, Dokl. Akad. Nauk SSSR, 273:6 (1983), 1325–1328 ; English transl. in Soviet Math. Dokl., 28 (1983), 806–809 | MR | Zbl
[20] L. Lempert, “La métrique de Kobayashi et la représentation des domaines sur la boule”, Bull. Soc. Math. France, 109:4 (1981), 427–474 | DOI | MR | Zbl
[21] L. Lempert, “A precise result on the boundary regularity of biholomorphic mappings”, Math. Z., 193:4 (1986), 559–579 | DOI | MR | Zbl
[22] R. Narasimhan, Several complex variables, Chicago Lectures in Math., Univ. of Chicago Press, Chicago, IL–London, 1971, x+174 pp. | MR | Zbl
[23] S. M. Nikol'skii, Approximation of functions of several variables and imbedding theorems, 2nd ed., Nauka, Moscow, 1977, 455 pp. ; English transl. of 1st ed., Grundlehren Math. Wiss., 205, Springer-Verlag, New York–Heidelberg, 1975, viii+418 pp. | MR | Zbl | DOI | MR | Zbl
[24] L. Nirenberg, S. Webster and P. Yang, “Local boundary regularity of holomorphic mappings”, Comm. Pure Appl. Math., 33:3 (1980), 305–338 | DOI | MR | Zbl
[25] S. I. Pinchuk and S. V. Khasanov, “Asymptotically holomorphic functions and their applications”, Mat. Sb. (N.S.), 134(176):4(12) (1987), 546–555 ; English transl. in Sb. Math., 62:2 (1989), 541–550 | MR | Zbl | DOI
[26] S. I. Pinchuk, “On proper holomorphic mappings of strictly pseudoconvex domains”, Sibirsk. Mat. Zh., 15:4 (1974), 909–917 ; English transl. in Siberian Math. J., 15:4 (1974), 644–649 | MR | Zbl | DOI
[27] S. I. Pinchuk, “A boundary uniqueness theorem for holomorphic functions of several complex variables”, Mat. Zametki, 15:2 (1974), 205–212 ; English transl. in Math. Notes, 15:2 (1974), 116–120 | MR | Zbl | DOI
[28] S. I. Pinchuk and Sh. I. Tsyganov, “The smoothness of $\operatorname{CR}$-mappings between strictly pseudoconvex hypersurfaces”, Izv. Akad. Nauk SSSR Ser. Mat., 53:5 (1989), 1120–1129 ; English transl. in Izv. Math., 35:2 (1990), 457–467 | MR | Zbl | DOI
[29] S. Pinchuk, “The scaling method and holomorphic mappings”, Several complex variables and complex geometry, Part 1 (Santa Cruz, CA 1989), Proc. Sympos. Pure Math., 52, Part 1, Amer. Math. Soc., Providence, RI, 1991, 151–161 | DOI | MR | Zbl
[30] S. Pinchuk, R. Shafikov and A. Sukhov, “Some aspects of holomorphic mappings: a survey”, Complex analysis and its applications, Tr. Mat. Inst. Steklova, 298, MAIK “Nauka/Interperiodica”, Moscow, 2017, 227–266 ; English transl. in Proc. Steklov Inst. Math., 298 (2017), 212–247 | DOI | MR | Zbl | DOI
[31] J.-P. Rosay, “Sur une caractérisation de la boule parmi les domaines de $\mathbb C^n$ par son groupe d'automorphismes”, Ann. Inst. Fourier (Grenoble), 29:4 (1979), 91–97 | DOI | MR | Zbl
[32] H. L. Royden, “Remarks on the Kobayashi metric”, Several complex variables. II (Univ. Maryland, College Park, MD 1970), Lecture Notes in Math., 185, Springer, Berlin, 1971, 125–137 | DOI | MR | Zbl
[33] A. B. Sukhov, “On continuous extension and rigidity of holomorphic mappings between domains with piecewise smooth boundaries”, Mat. Sb., 185:8 (1994), 115–128 ; English transl. in Sb. Math., 82:2 (1995), 471–483 | MR | Zbl | DOI
[34] A. B. Sukhov, “Holomorphic mappings between domains with low boundary regularity”, Izv. Ross. Akad. Nauk Ser. Mat., 85:3 (2021), 210–221 ; English transl. in Izv. Math., 85:3 (2021), 536–546 | DOI | MR | Zbl | DOI
[35] A. Sukhov, “Pluripolar sets, real submanifolds and pseudoholomorphic discs”, J. Aust. Math. Soc., 109:2 (2020), 270–288 | DOI | MR | Zbl
[36] B. Wong, “Characterization of the unit ball in $\mathbb C^n$ by its automorphism group”, Invent. Math., 41:3 (1977), 253–257 | DOI | MR | Zbl
[37] A. Zimmer, “Generic analytic polyhedron with non-compact automorphism group”, Indiana Univ. Math. J., 67:3 (2018), 1299–1326 | DOI | MR | Zbl