Mots-clés : Padé approximant
@article{SM_2022_213_11_a6,
author = {S. P. Suetin},
title = {A~direct proof of {Stahl's} theorem for a~generic class of algebraic functions},
journal = {Sbornik. Mathematics},
pages = {1582--1596},
year = {2022},
volume = {213},
number = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2022_213_11_a6/}
}
S. P. Suetin. A direct proof of Stahl's theorem for a generic class of algebraic functions. Sbornik. Mathematics, Tome 213 (2022) no. 11, pp. 1582-1596. http://geodesic.mathdoc.fr/item/SM_2022_213_11_a6/
[1] A. I. Aptekarev, V. I. Buslaev, A. Martínez-Finkelshtein and S. P. Suetin, “Padé approximants, continued fractions, and orthogonal polynomials”, Uspekhi Mat. Nauk, 66:6(402) (2011), 37–122 ; English transl. in Russian Math. Surveys, 66:6 (2011), 1049–1131 | DOI | MR | Zbl | DOI
[2] A. I. Aptekarev and M. L. Yattselev, “Padé approximants for functions with branch points – strong asymptotics of Nuttall-Stahl polynomials”, Acta Math., 215:2 (2015), 217–280 | DOI | MR | Zbl
[3] V. I. Buslaev, “On a lower bound for the rate of convergence of multipoint Padé approximants of piecewise analytic functions”, Izv. Ross. Akad. Nauk Ser. Mat., 85:3 (2021), 13–29 ; English transl. in Izv. Math., 85:3 (2021), 351–366 | DOI | MR | Zbl | DOI
[4] E. M. Chirka, “Capacities on a compact Riemann surface”, Tr. Mat. Inst. Steklova, 311 (2020), 41–83 ; English transl. in Proc. Steklov Inst. Math., 311 (2020), 36–77 | DOI | MR | Zbl | DOI
[5] A. A. Gonchar and E. A. Rakhmanov, “Equilibrium distributions and degree of rational approximation of analytic functions”, Mat. Sb., 134(176):3(11) (1987), 306–352 ; English transl. in Sb. Math., 62:2 (1989), 305–348 | MR | Zbl | DOI
[6] A. V. Komlov, “The polynomial Hermite-Padé $m$-system for meromorphic functions on a compact Riemann surface”, Mat. Sb., 212:12 (2021), 40–76 ; English transl. in Sb. Math., 212:12 (2021), 1694–1729 | DOI | MR | Zbl | DOI
[7] N. S. Landkof, Foundations of modern potential theory, Nauka, Moscow, 1966, 515 pp. ; English transl., Grundlehren Math. Wiss., 180, Springer-Verlag, New York–Heidelberg, 1972, x+424 pp. | MR | Zbl | MR | Zbl
[8] A. Martínez-Finkelshtein, E. A. Rakhmanov and S. P. Suetin, “Variation of the equilibrium energy and the $S$-property of stationary compact sets”, Mt. Sb., 202:12 (2011), 113–136 ; English transl. in Sb. Math., 202:12 (2011), 1831–1852 | DOI | MR | Zbl | DOI
[9] J. Nuttall and S. R. Singh, “Orthogonal polynomials and Padé approximants associated with a system of arcs”, J. Approx. Theory, 21:1 (1977), 1–42 | DOI | MR | Zbl
[10] J. Nuttall, “Asymptotics of diagonal Hermite-Padé polynomials”, J. Approx. Theory, 42:4 (1984), 299–386 | DOI | MR | Zbl
[11] E. A. Perevoznikova and E. A. Rakhmanov, Variation of equilibrium energy and the $S$-property of compact sets with minimum capacity, Manuscript, 1994 (Russian)
[12] E. A. Rahmanov (Rakhmanov), “Convergence of diagonal Padé approximants”, Mat. Sb., 104(146):2(10) (1977), 271–291 ; English transl. in Sb. Math., 33:2 (1977), 243–260 | MR | Zbl | DOI
[13] E. A. Rakhmanov, “Orthogonal polynomials and $S$-curves”, Recent advances in orthogonal polynomials, special functions, and their applications, Contemp. Math., 578, Amer. Math. Soc., Providence, RI, 2012, 195–239 | DOI | MR | Zbl
[14] E. B. Saff and V. Totik, Logarithmic potentials with external fields, Appendix B by T. Bloom, Grundlehren Math. Wiss., 316, Springer-Verlag, Berlin, 1997, xvi+505 pp. | DOI | MR | Zbl
[15] H. Stahl, “Three different approaches to a proof of convergence for Padé approximants”, Rational approximation and applications in mathematics and physics (Łańcut 1985), Lecture Notes in Math., 1237, Springer, Berlin, 1987, 79–124 | DOI | MR | Zbl
[16] H. Stahl, “Diagonal Padé approximants to hyperelliptic functions”, Ann. Fac. Sci. Toulouse Math. (6), 1996, special issue, 121–193 | DOI | MR | Zbl
[17] H. Stahl, “The convergence of Padé approximants to functions with branch points”, J. Approx. Theory, 91:2 (1997), 139–204 | DOI | MR | Zbl
[18] H. R. Stahl, Sets of minimal capacity and extremal domains, arXiv: 1205.3811
[19] M. L. Yattselev, “Convergence of two-point Padé approximants to piecewise holomorphic functions”, Mat. Sb., 212:11 (2021), 128–164 ; English transl. in Sb. Math., 212:11 (2021), 1626–1659 | DOI | MR | Zbl | DOI