A generalization of the discrete Rodrigues formula for Meixner polynomials
Sbornik. Mathematics, Tome 213 (2022) no. 11, pp. 1559-1581 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A generalization of Meixner polynomials leading to a new construction of Apéry approximations is put forward. The limiting distribution of the zeros of scaled polynomials is described in terms of algebraic functions. The resulting distribution is shown to be a solution of some vector equilibrium problem in the theory of logarithmic potential. Bibliography: 21 titles.
Keywords: Meixner polynomials, saddle-point method, algebraic functions, equilibrium problem.
Mots-clés : discrete Rodrigues formula, Apéry approximations
@article{SM_2022_213_11_a5,
     author = {V. N. Sorokin},
     title = {A~generalization of the discrete {Rodrigues} formula for {Meixner} polynomials},
     journal = {Sbornik. Mathematics},
     pages = {1559--1581},
     year = {2022},
     volume = {213},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2022_213_11_a5/}
}
TY  - JOUR
AU  - V. N. Sorokin
TI  - A generalization of the discrete Rodrigues formula for Meixner polynomials
JO  - Sbornik. Mathematics
PY  - 2022
SP  - 1559
EP  - 1581
VL  - 213
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2022_213_11_a5/
LA  - en
ID  - SM_2022_213_11_a5
ER  - 
%0 Journal Article
%A V. N. Sorokin
%T A generalization of the discrete Rodrigues formula for Meixner polynomials
%J Sbornik. Mathematics
%D 2022
%P 1559-1581
%V 213
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2022_213_11_a5/
%G en
%F SM_2022_213_11_a5
V. N. Sorokin. A generalization of the discrete Rodrigues formula for Meixner polynomials. Sbornik. Mathematics, Tome 213 (2022) no. 11, pp. 1559-1581. http://geodesic.mathdoc.fr/item/SM_2022_213_11_a5/

[1] J. Meixner, “Orthogonale Polynomsysteme mit einer besonderen Gestalt der erzeugenden Funktion”, J. London Math. Soc., 9:1 (1934), 6–13 | DOI | MR | Zbl

[2] A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher transcendental functions, Based, in part, on notes left by H. Bateman, v. 2, McGraw-Hill Book Company, Inc., New York–Toronto–London, 1953, xvii+396 pp. | MR | Zbl

[3] V. N. Sorokin, “On multiple orthogonal polynomials for discrete Meixner measures”, Mat. Sb., 201:10 (2010), 137–160 ; English transl. in Sb. Math., 201:10 (2010), 1539–1561 | DOI | MR | Zbl | DOI

[4] V. N. Sorokin and E. N. Cherednikova, “Meixner polynomials with varying weight”, Sovr. Probl. Mat. Mekh., 6:1 (2011), 118–125 (Russian)

[5] V. N. Sorokin, “Asymptotic regimes for multiple Meixner polynomials”, Preprint. Inst. Prikl. Mat. Keldysha, 2016, 046, 32 pp. (Russian) | DOI

[6] N. N. Sorokon, “Anjelesco-Meizner polynomials”, Preprint. Inst. Prikl. Mat. Keldysha, 2017, 027, 16 pp. (Russian) | DOI

[7] V. N. Sorokin, “On multiple orthogonal polynomials for three Meixner measures”, Complex analysis and its applications, Tr. Mat. Inst. Steklova, 298, MAIK “Nauka/Interperiodika”, Moscow, 2017, 315–337 ; English transl. in Proc. Steklov Inst. Math., 298 (2017), 294–316 | DOI | MR | Zbl | DOI

[8] V. N. Sorokin, “Hermite-Padé approximants to the Weyl function and its derivative for discrete measures”, Mat. Sb., 211:10 (2020), 139–156 ; English transl. in Sb. Math., 211:10 (2020), 1486–1502 | DOI | MR | Zbl | DOI

[9] V. N. Sorokin, “Asymptotics of Hermite-Padé approximants of the first type for discrete Meixner measures”, Lobachevskii J. Math., 42:11 (2021), 2654–2667 | DOI | MR | Zbl

[10] A. V. D'yachenko and V. G. Lysov, “Polynomials of multiple discrete orthogonalities on lattices with shift”, Preprint. Inst. Prikl. Mat. Keldysha, 2018, 218, 24 pp. (Russian) | DOI

[11] K. Mahler, “Perfect systems”, Compositio Math., 19:2 (1968), 95–166 | MR | Zbl

[12] E. M. Nikishin and V. N. Sorokin, Rational approximations and orthogonality, Nauka, Moscow, 1988, 256 pp. ; English transl., Transl. Math. Monogr., 92, Amer. Math. Soc., Providence, RI, 1991, viii+221 pp. | MR | Zbl | DOI | MR | Zbl

[13] S. P. Suetin, “Two examples related to properties of discrete measures”, Mat. Zametki, 110:4 (2021), 592–597 ; English transl. in Math. Notes, 110:4 (2021), 578–582 | DOI | MR | Zbl | DOI

[14] E. A. Rakhmanov, “On asymptotic properties of polynomials orthogonal on the real axis”, Mat. Sb., 119(161):2(10) (1982), 163–203 ; English transl. in Sb. Math., 47:1 (1984), 155–193 | MR | Zbl | DOI

[15] N. S. Landkof, Foundations of modern potential theory, Nauka, Moscow, 1966, 515 pp. ; English transl., Grundlehren Math. Wiss., 180, Springer-Verlag, New York–Heidelberg, 1972, x+424 pp. | MR | Zbl | MR | Zbl

[16] A. A. Gonchar, E. A. Rakhmanov and V. N. Sorokin, “Hermite-Padé approximants for systems of Markov-type functions”, Mat. Sb., 188:5 (1997), 33–58 ; English transl. in Sb. Math., 188:5 (1997), 671–696 | DOI | MR | Zbl | DOI

[17] E. A. Rakhmanov, “Equilibrium measure and the distribution of zeros of the exremal polynomials of a discrete variable”, Mat. Sb., 187:8 (1996), 109–124 ; English transl. in Sb. Math., 187:8 (1996), 1213–1228 | DOI | MR | Zbl | DOI

[18] R. Apéry, “Irrationalité de $\zeta(2)$ et $\zeta(3)$”, Astérisque, 61, Soc. Math. France, Paris, 1979, 11–13 | MR | Zbl

[19] M. Prévost, “A new proof of the irrationality of $\zeta(2)$ and $\zeta(3)$ using Padé approximants”, J. Comput. Appl. Math., 67:2 (1996), 219–235 | DOI | MR | Zbl

[20] J. Touchard, “Nombres exponentiels et nombres de Bernoulli”, Canad. J. Math., 8 (1956), 305–320 | DOI | MR | Zbl

[21] J. A. Wilson, “Some hypergeometric orthogonal polynomials”, SIAM J. Math. Anal., 11:4 (1980), 690–701 | DOI | MR | Zbl