Mots-clés : discrete Rodrigues formula, Apéry approximations
@article{SM_2022_213_11_a5,
author = {V. N. Sorokin},
title = {A~generalization of the discrete {Rodrigues} formula for {Meixner} polynomials},
journal = {Sbornik. Mathematics},
pages = {1559--1581},
year = {2022},
volume = {213},
number = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2022_213_11_a5/}
}
V. N. Sorokin. A generalization of the discrete Rodrigues formula for Meixner polynomials. Sbornik. Mathematics, Tome 213 (2022) no. 11, pp. 1559-1581. http://geodesic.mathdoc.fr/item/SM_2022_213_11_a5/
[1] J. Meixner, “Orthogonale Polynomsysteme mit einer besonderen Gestalt der erzeugenden Funktion”, J. London Math. Soc., 9:1 (1934), 6–13 | DOI | MR | Zbl
[2] A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher transcendental functions, Based, in part, on notes left by H. Bateman, v. 2, McGraw-Hill Book Company, Inc., New York–Toronto–London, 1953, xvii+396 pp. | MR | Zbl
[3] V. N. Sorokin, “On multiple orthogonal polynomials for discrete Meixner measures”, Mat. Sb., 201:10 (2010), 137–160 ; English transl. in Sb. Math., 201:10 (2010), 1539–1561 | DOI | MR | Zbl | DOI
[4] V. N. Sorokin and E. N. Cherednikova, “Meixner polynomials with varying weight”, Sovr. Probl. Mat. Mekh., 6:1 (2011), 118–125 (Russian)
[5] V. N. Sorokin, “Asymptotic regimes for multiple Meixner polynomials”, Preprint. Inst. Prikl. Mat. Keldysha, 2016, 046, 32 pp. (Russian) | DOI
[6] N. N. Sorokon, “Anjelesco-Meizner polynomials”, Preprint. Inst. Prikl. Mat. Keldysha, 2017, 027, 16 pp. (Russian) | DOI
[7] V. N. Sorokin, “On multiple orthogonal polynomials for three Meixner measures”, Complex analysis and its applications, Tr. Mat. Inst. Steklova, 298, MAIK “Nauka/Interperiodika”, Moscow, 2017, 315–337 ; English transl. in Proc. Steklov Inst. Math., 298 (2017), 294–316 | DOI | MR | Zbl | DOI
[8] V. N. Sorokin, “Hermite-Padé approximants to the Weyl function and its derivative for discrete measures”, Mat. Sb., 211:10 (2020), 139–156 ; English transl. in Sb. Math., 211:10 (2020), 1486–1502 | DOI | MR | Zbl | DOI
[9] V. N. Sorokin, “Asymptotics of Hermite-Padé approximants of the first type for discrete Meixner measures”, Lobachevskii J. Math., 42:11 (2021), 2654–2667 | DOI | MR | Zbl
[10] A. V. D'yachenko and V. G. Lysov, “Polynomials of multiple discrete orthogonalities on lattices with shift”, Preprint. Inst. Prikl. Mat. Keldysha, 2018, 218, 24 pp. (Russian) | DOI
[11] K. Mahler, “Perfect systems”, Compositio Math., 19:2 (1968), 95–166 | MR | Zbl
[12] E. M. Nikishin and V. N. Sorokin, Rational approximations and orthogonality, Nauka, Moscow, 1988, 256 pp. ; English transl., Transl. Math. Monogr., 92, Amer. Math. Soc., Providence, RI, 1991, viii+221 pp. | MR | Zbl | DOI | MR | Zbl
[13] S. P. Suetin, “Two examples related to properties of discrete measures”, Mat. Zametki, 110:4 (2021), 592–597 ; English transl. in Math. Notes, 110:4 (2021), 578–582 | DOI | MR | Zbl | DOI
[14] E. A. Rakhmanov, “On asymptotic properties of polynomials orthogonal on the real axis”, Mat. Sb., 119(161):2(10) (1982), 163–203 ; English transl. in Sb. Math., 47:1 (1984), 155–193 | MR | Zbl | DOI
[15] N. S. Landkof, Foundations of modern potential theory, Nauka, Moscow, 1966, 515 pp. ; English transl., Grundlehren Math. Wiss., 180, Springer-Verlag, New York–Heidelberg, 1972, x+424 pp. | MR | Zbl | MR | Zbl
[16] A. A. Gonchar, E. A. Rakhmanov and V. N. Sorokin, “Hermite-Padé approximants for systems of Markov-type functions”, Mat. Sb., 188:5 (1997), 33–58 ; English transl. in Sb. Math., 188:5 (1997), 671–696 | DOI | MR | Zbl | DOI
[17] E. A. Rakhmanov, “Equilibrium measure and the distribution of zeros of the exremal polynomials of a discrete variable”, Mat. Sb., 187:8 (1996), 109–124 ; English transl. in Sb. Math., 187:8 (1996), 1213–1228 | DOI | MR | Zbl | DOI
[18] R. Apéry, “Irrationalité de $\zeta(2)$ et $\zeta(3)$”, Astérisque, 61, Soc. Math. France, Paris, 1979, 11–13 | MR | Zbl
[19] M. Prévost, “A new proof of the irrationality of $\zeta(2)$ and $\zeta(3)$ using Padé approximants”, J. Comput. Appl. Math., 67:2 (1996), 219–235 | DOI | MR | Zbl
[20] J. Touchard, “Nombres exponentiels et nombres de Bernoulli”, Canad. J. Math., 8 (1956), 305–320 | DOI | MR | Zbl
[21] J. A. Wilson, “Some hypergeometric orthogonal polynomials”, SIAM J. Math. Anal., 11:4 (1980), 690–701 | DOI | MR | Zbl