On zeros, bounds, and asymptotics for orthogonal polynomials on the unit circle
Sbornik. Mathematics, Tome 213 (2022) no. 11, pp. 1512-1529 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\mu$ be a measure on the unit circle that is regular in the sense of Stahl, Totik and Ullmann. Let $\{\varphi_{n}\}$ be the orthonormal polynomials for $\mu$ and $\{z_{jn}\}$ their zeros. Let $\mu$ be absolutely continuous in an arc $\Delta$ of the unit circle, with $\mu'$ positive and continuous there. We show that uniform boundedness of the orthonormal polynomials in subarcs $\Gamma$ of $\Delta$ is equivalent to certain asymptotic behaviour of their zeros inside sectors that rest on $\Gamma$. Similarly the uniform limit $\lim_{n\to \infty}|\varphi_{n}(z)|^{2}\mu'(z)=1$ is equivalent to related asymptotics for the zeros in such sectors. Bibliography: 27 titles.
Keywords: orthogonal polynomials on the unit circle, bounds and asymptotics, zeros.
@article{SM_2022_213_11_a3,
     author = {D. S. Lubinsky},
     title = {On zeros, bounds, and asymptotics for orthogonal polynomials on the unit circle},
     journal = {Sbornik. Mathematics},
     pages = {1512--1529},
     year = {2022},
     volume = {213},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2022_213_11_a3/}
}
TY  - JOUR
AU  - D. S. Lubinsky
TI  - On zeros, bounds, and asymptotics for orthogonal polynomials on the unit circle
JO  - Sbornik. Mathematics
PY  - 2022
SP  - 1512
EP  - 1529
VL  - 213
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2022_213_11_a3/
LA  - en
ID  - SM_2022_213_11_a3
ER  - 
%0 Journal Article
%A D. S. Lubinsky
%T On zeros, bounds, and asymptotics for orthogonal polynomials on the unit circle
%J Sbornik. Mathematics
%D 2022
%P 1512-1529
%V 213
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2022_213_11_a3/
%G en
%F SM_2022_213_11_a3
D. S. Lubinsky. On zeros, bounds, and asymptotics for orthogonal polynomials on the unit circle. Sbornik. Mathematics, Tome 213 (2022) no. 11, pp. 1512-1529. http://geodesic.mathdoc.fr/item/SM_2022_213_11_a3/

[1] M. U. Ambroladze, “On the possible growth of orthogonal polynomials with continuous positive weight”, Mat. Zametki, 45:6 (1989), 99–101 (Russian) | MR | Zbl

[2] M. U. Ambroladze, “On the possible rate of growth of polynomials orthogonal with a continuous positive weight”, Mat. Sb., 182:3 (1991), 332–353 ; English transl. in Sb. Math., 72:2 (1992), 311–331 | MR | Zbl | DOI

[3] A. I. Aptekarev, S. A. Denisov and D. N. Tulyakov, “V. A. Steklov's problem of estimating the growth of orthogonal polynomials”, Selected issues of mathematics and mechanics, Tr. Mat. Inst. Steklova, 289, MAIK “Nauka/Interperiodica”, Moscow, 2015, 83–106 ; English transl. in Proc. Steklov Inst. Math., 289 (2015), 72–95 | DOI | MR | Zbl | DOI

[4] A. Aptekarev, S. Denisov and D. Tulyakov, “On a problem by Steklov”, J. Amer. Math. Soc., 29:4 (2016), 1117–1165 | DOI | MR | Zbl

[5] V. M. Badkov, “The asymptotic behavior of orthogonal polynomials”, Mat. Sb. (N.S.), 109(151):1(5) (1979), 46–59 ; English transl. in Sb. Math., 37:1 (1980), 39–51 | MR | Zbl | DOI

[6] R. Bessonov and S. Denisov, “Zero sets, entropy, and pointwise asymptotics of orthogonal polynomials”, J. Funct. Anal., 280:12 (2021), 109002, 38 pp. | DOI | MR | Zbl

[7] J. Breuer and E. Seelig, “On the spacing of zeros of paraorthogonal polynomials for singular measures”, J. Approx. Theory, 259 (2020), 105482, 20 pp. | DOI | MR | Zbl

[8] G. Freud, Orthogonal polynomials, Akad. Kiado, Budapest; Pergamon Press, Oxford, 1971, 294 pp. | DOI

[9] Ya. L. Geronimus, Polynomials, orthogonal on a circumference and on an interval. Estimates, asymptotic formulas, orthogonal series, Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1958, 240 pp. ; English transl., Ya. L. Geronimus, Polynomials orthogonal on a circle and interval, Internat. Ser. Monogr. Pure Appl. Math., 18, Pergamon Press, New York–Oxford–London–Paris, 1960, ix+210 pp. | MR | Zbl | MR | Zbl

[10] E. Levin and D. S. Lubinsky, “Universality limits involving orthogonal polynomials on the unit circle”, Comput. Methods Funct. Theory, 7:2 (2007), 543–561 | DOI | MR | Zbl

[11] E. Levin and D. S. Lubinsky, “Bounds on orthogonal polynomials and separation of their zeros”, J. Spectr. Theory, 12:2 (2022), 497–513 | DOI | Zbl

[12] D. S. Lubinsky, “A new approach to universality limits involving orthogonal polynomials”, Ann. of Math. (2), 170:2 (2009), 915–939 | DOI | MR | Zbl

[13] D. S. Lubinsky, “Local asymptotics for orthonormal polynomials on the unit circle via universality”, J. Anal. Math., 141:1 (2020), 285–304 | DOI | MR | Zbl

[14] D. S. Lubinsky, “Correction to ‘Local asymptotics for orthonormal polynomials on the unit circle via universality’ ”, J. Anal. Math., 144:1 (2021), 397–400 | DOI | MR | Zbl

[15] H. N. Mhaskar and E. B. Saff, “On the distribution of zeros of polynomials orthogonal on the unit circle”, J. Approx. Theory, 63:1 (1990), 30–38 | DOI | MR | Zbl

[16] P. G. Nevai, Orthogonal polynomials, Mem. Amer. Math. Soc., 18, no. 213, Amer. Math. Soc., Providence, RI, 1979, v+185 pp. | DOI | MR | Zbl

[17] P. Nevai and V. Totik, “Orthogonal polynomials and their zeros”, Acta Sci. Math. (Szeged), 53:1–2 (1989), 99–104 | MR | Zbl

[18] E. A. Rahmanov (Rakhmanov), “On Steklov's conjecture in the theory of orthogonal polynomials”, Mat. Sb. (N.S.), 108(150):4 (1979), 581–608 ; English transl. in Sb. Math., 36:4 (1980), 549–575 | MR | Zbl | DOI

[19] E. A. Rakhmanov, “On asymptotic properties of polynomials orthogonal on the circle with weights not satisfying the Szegő's condition”, Mat. Sb. (N.S.), 130(172):2(6) (1986), 151–169 ; English transl. in Sb. Math., 58:1 (1987), 149–167 | MR | Zbl | DOI

[20] E. A. Rakhmanov, “Estimates of the growth of orthogonal polynomials whose weight is bounded away from zero”, Mat. Sb. (N.S.), 114(156):2 (1981), 269–298 ; English transl. in Sb. Math., 42:2 (1982), 237–263 | MR | DOI | Zbl

[21] B. Simanek, “Zeros of non-Baxter paraorthogonal polynomials on the unit circle”, Constr. Approx., 35:1 (2012), 107–121 | DOI | MR | Zbl

[22] B. Simanek, “Zero spacings of paraorthogonal polynomials on the unit circle”, J. Approx. Theory, 256 (2020), 105437, 9 pp. | DOI | MR | Zbl

[23] B. Simon, Orthogonal polynomials on the unit circle, Part 1. Classical theory, Amer. Math. Soc. Colloq. Publ., 54, Part 1, Amer. Math. Soc., Providence, RI, 2005, xxvi+466 pp. ; Part 2. Spectral theory, Amer. Math. Soc. Colloq. Publ., 54, Part 2, i–xxii and 467–1044 pp. | MR | Zbl | DOI | MR | Zbl

[24] B. Simon, Szegő's theorem and its descendants. Spectral theory for $L^2$ perturbations of orthogonal polynomials, M. B. Porter Lectures, Princeton Univ. Press, Princeton, NJ, 2011, xii+650 pp. | MR | Zbl

[25] H. Stahl and V. Totik, General orthogonal polynomials, Encyclopedia Math. Appl., 43, Cambridge Univ. Press, Cambridge, 1992, xii+250 pp. | DOI | MR | Zbl

[26] G. Szegő, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., 23, 4th ed., Amer. Math. Soc., Providence, RI, 1975, xiii+432 pp. | MR | Zbl

[27] V. Totik, “Universality under Szegő's condition”, Canad. Math. Bull., 59:1 (2016), 211–224 | DOI | MR | Zbl