On zeros, bounds, and asymptotics for orthogonal polynomials on the unit circle
Sbornik. Mathematics, Tome 213 (2022) no. 11, pp. 1512-1529

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mu$ be a measure on the unit circle that is regular in the sense of Stahl, Totik and Ullmann. Let $\{\varphi_{n}\}$ be the orthonormal polynomials for $\mu$ and $\{z_{jn}\}$ their zeros. Let $\mu$ be absolutely continuous in an arc $\Delta$ of the unit circle, with $\mu'$ positive and continuous there. We show that uniform boundedness of the orthonormal polynomials in subarcs $\Gamma$ of $\Delta$ is equivalent to certain asymptotic behaviour of their zeros inside sectors that rest on $\Gamma$. Similarly the uniform limit $\lim_{n\to \infty}|\varphi_{n}(z)|^{2}\mu'(z)=1$ is equivalent to related asymptotics for the zeros in such sectors. Bibliography: 27 titles.
Keywords: orthogonal polynomials on the unit circle, bounds and asymptotics, zeros.
@article{SM_2022_213_11_a3,
     author = {D. S. Lubinsky},
     title = {On zeros, bounds, and asymptotics for orthogonal polynomials on the unit circle},
     journal = {Sbornik. Mathematics},
     pages = {1512--1529},
     publisher = {mathdoc},
     volume = {213},
     number = {11},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2022_213_11_a3/}
}
TY  - JOUR
AU  - D. S. Lubinsky
TI  - On zeros, bounds, and asymptotics for orthogonal polynomials on the unit circle
JO  - Sbornik. Mathematics
PY  - 2022
SP  - 1512
EP  - 1529
VL  - 213
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2022_213_11_a3/
LA  - en
ID  - SM_2022_213_11_a3
ER  - 
%0 Journal Article
%A D. S. Lubinsky
%T On zeros, bounds, and asymptotics for orthogonal polynomials on the unit circle
%J Sbornik. Mathematics
%D 2022
%P 1512-1529
%V 213
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2022_213_11_a3/
%G en
%F SM_2022_213_11_a3
D. S. Lubinsky. On zeros, bounds, and asymptotics for orthogonal polynomials on the unit circle. Sbornik. Mathematics, Tome 213 (2022) no. 11, pp. 1512-1529. http://geodesic.mathdoc.fr/item/SM_2022_213_11_a3/