Conformality in the sense of Gromov and holomorphy
Sbornik. Mathematics, Tome 213 (2022) no. 11, pp. 1507-1511
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider a mapping $w=f(z_1, \dots,z_n) $ that is conformal in the sense of Gromov and indicate a criterion for it to be holomorphic. Bibliography: 5 titles.
Keywords:
holomorphic function, conformality of a mapping in the sense of Gromov.
@article{SM_2022_213_11_a2,
author = {V. A. Zorich},
title = {Conformality in the sense of {Gromov} and holomorphy},
journal = {Sbornik. Mathematics},
pages = {1507--1511},
year = {2022},
volume = {213},
number = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2022_213_11_a2/}
}
V. A. Zorich. Conformality in the sense of Gromov and holomorphy. Sbornik. Mathematics, Tome 213 (2022) no. 11, pp. 1507-1511. http://geodesic.mathdoc.fr/item/SM_2022_213_11_a2/
[1] M. L. Gromov, “Colourful categories”, Uspekhi Mat. Nauk, 70:4(424) (2015), 3–76 ; English transl. in Russian Math. Surveys, 70:4 (2015), 591–655 | DOI | MR | Zbl | DOI
[2] V. A. Zorich, Conformality in the sense of Gromov and a generalized Liouville theorem, arXiv: 2108.00945
[3] V. A. Zorich, A generalization of the Picard theorem, arXiv: 2108.05161
[4] V. A. Zorich, Invertibility of quasiconformal operators, arXiv: 2108.01408
[5] L. V. Ahlfors, Lectures on quasiconformal mappings, Van Nostrand Math. Stud., 10, D. Van Nostrand Co., Inc., Toronto, ON–New York–London, 1966, v+146 pp. | MR | Zbl