Conformality in the sense of Gromov and holomorphy
Sbornik. Mathematics, Tome 213 (2022) no. 11, pp. 1507-1511
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a mapping $w=f(z_1, \dots,z_n) $ that is conformal in the sense of Gromov and indicate a criterion for it to be holomorphic.
Bibliography: 5 titles.
Keywords:
holomorphic function, conformality of a mapping in the sense of Gromov.
@article{SM_2022_213_11_a2,
author = {V. A. Zorich},
title = {Conformality in the sense of {Gromov} and holomorphy},
journal = {Sbornik. Mathematics},
pages = {1507--1511},
publisher = {mathdoc},
volume = {213},
number = {11},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2022_213_11_a2/}
}
V. A. Zorich. Conformality in the sense of Gromov and holomorphy. Sbornik. Mathematics, Tome 213 (2022) no. 11, pp. 1507-1511. http://geodesic.mathdoc.fr/item/SM_2022_213_11_a2/