Conformality in the sense of Gromov and holomorphy
Sbornik. Mathematics, Tome 213 (2022) no. 11, pp. 1507-1511 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a mapping $w=f(z_1, \dots,z_n) $ that is conformal in the sense of Gromov and indicate a criterion for it to be holomorphic. Bibliography: 5 titles.
Keywords: holomorphic function, conformality of a mapping in the sense of Gromov.
@article{SM_2022_213_11_a2,
     author = {V. A. Zorich},
     title = {Conformality in the sense of {Gromov} and holomorphy},
     journal = {Sbornik. Mathematics},
     pages = {1507--1511},
     year = {2022},
     volume = {213},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2022_213_11_a2/}
}
TY  - JOUR
AU  - V. A. Zorich
TI  - Conformality in the sense of Gromov and holomorphy
JO  - Sbornik. Mathematics
PY  - 2022
SP  - 1507
EP  - 1511
VL  - 213
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2022_213_11_a2/
LA  - en
ID  - SM_2022_213_11_a2
ER  - 
%0 Journal Article
%A V. A. Zorich
%T Conformality in the sense of Gromov and holomorphy
%J Sbornik. Mathematics
%D 2022
%P 1507-1511
%V 213
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2022_213_11_a2/
%G en
%F SM_2022_213_11_a2
V. A. Zorich. Conformality in the sense of Gromov and holomorphy. Sbornik. Mathematics, Tome 213 (2022) no. 11, pp. 1507-1511. http://geodesic.mathdoc.fr/item/SM_2022_213_11_a2/

[1] M. L. Gromov, “Colourful categories”, Uspekhi Mat. Nauk, 70:4(424) (2015), 3–76 ; English transl. in Russian Math. Surveys, 70:4 (2015), 591–655 | DOI | MR | Zbl | DOI

[2] V. A. Zorich, Conformality in the sense of Gromov and a generalized Liouville theorem, arXiv: 2108.00945

[3] V. A. Zorich, A generalization of the Picard theorem, arXiv: 2108.05161

[4] V. A. Zorich, Invertibility of quasiconformal operators, arXiv: 2108.01408

[5] L. V. Ahlfors, Lectures on quasiconformal mappings, Van Nostrand Math. Stud., 10, D. Van Nostrand Co., Inc., Toronto, ON–New York–London, 1966, v+146 pp. | MR | Zbl