Conformality in the sense of Gromov and holomorphy
Sbornik. Mathematics, Tome 213 (2022) no. 11, pp. 1507-1511

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a mapping $w=f(z_1, \dots,z_n) $ that is conformal in the sense of Gromov and indicate a criterion for it to be holomorphic. Bibliography: 5 titles.
Keywords: holomorphic function, conformality of a mapping in the sense of Gromov.
@article{SM_2022_213_11_a2,
     author = {V. A. Zorich},
     title = {Conformality in the sense of {Gromov} and holomorphy},
     journal = {Sbornik. Mathematics},
     pages = {1507--1511},
     publisher = {mathdoc},
     volume = {213},
     number = {11},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2022_213_11_a2/}
}
TY  - JOUR
AU  - V. A. Zorich
TI  - Conformality in the sense of Gromov and holomorphy
JO  - Sbornik. Mathematics
PY  - 2022
SP  - 1507
EP  - 1511
VL  - 213
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2022_213_11_a2/
LA  - en
ID  - SM_2022_213_11_a2
ER  - 
%0 Journal Article
%A V. A. Zorich
%T Conformality in the sense of Gromov and holomorphy
%J Sbornik. Mathematics
%D 2022
%P 1507-1511
%V 213
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2022_213_11_a2/
%G en
%F SM_2022_213_11_a2
V. A. Zorich. Conformality in the sense of Gromov and holomorphy. Sbornik. Mathematics, Tome 213 (2022) no. 11, pp. 1507-1511. http://geodesic.mathdoc.fr/item/SM_2022_213_11_a2/