Necessary and sufficient conditions for extending a function to a Carathéodory function
Sbornik. Mathematics, Tome 213 (2022) no. 11, pp. 1488-1506 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A criterion deciding whether a function given by its values (with multiplicities) at a sequence of points in the disc $\mathbb D=\{|z|<1\}$ can be extended to a holomorphic function with nonnegative real part in $\mathbb D$ is stated and proved. In the case when this function is given by the values of its derivatives at $z=0$, this is the well-known Carathéodory criterion. It is also shown that Carathéodory's criterion is a consequence of Schur's criterion and, conversely, Schur's criterion follows from Carathéodory's. Bibliography: 10 titles.
Keywords: continued fractions, Schur's algorithm, Hankel determinants.
Mots-clés : Carathéodory function
@article{SM_2022_213_11_a1,
     author = {V. I. Buslaev},
     title = {Necessary and sufficient conditions for extending a~function to {a~Carath\'eodory} function},
     journal = {Sbornik. Mathematics},
     pages = {1488--1506},
     year = {2022},
     volume = {213},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2022_213_11_a1/}
}
TY  - JOUR
AU  - V. I. Buslaev
TI  - Necessary and sufficient conditions for extending a function to a Carathéodory function
JO  - Sbornik. Mathematics
PY  - 2022
SP  - 1488
EP  - 1506
VL  - 213
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2022_213_11_a1/
LA  - en
ID  - SM_2022_213_11_a1
ER  - 
%0 Journal Article
%A V. I. Buslaev
%T Necessary and sufficient conditions for extending a function to a Carathéodory function
%J Sbornik. Mathematics
%D 2022
%P 1488-1506
%V 213
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2022_213_11_a1/
%G en
%F SM_2022_213_11_a1
V. I. Buslaev. Necessary and sufficient conditions for extending a function to a Carathéodory function. Sbornik. Mathematics, Tome 213 (2022) no. 11, pp. 1488-1506. http://geodesic.mathdoc.fr/item/SM_2022_213_11_a1/

[1] J. Schur, “Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind. I”, J. Reine Angew. Math., 1917:147 (1917), 205–232 ; II, 1918:148 (1918), 122–145 | DOI | MR | Zbl | DOI | MR

[2] C. Carathéodory, “Über den Variabilitätsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen”, Math. Ann., 64:1 (1907), 95–115 | DOI | MR | Zbl

[3] O. Toeplitz, “Über die Fourier'sche Entwickelung pozitiver Funktionen”, Rend. Circ. Mat. Palermo, 32 (1911), 191–192 | DOI | Zbl

[4] V. I. Buslaev, “Schur's criterion for formal power series”, Mat. Sb., 210:11 (2019), 58–75 ; English transl. in Sb. Math., 210:11 (2019), 1563–1580 | DOI | MR | Zbl | DOI

[5] G. Pólya, “Beitrag zur Verallgemeinerung des Verzerrungssatzes auf mehrfach zusammenhängende Gebiete. III”, Sitzungsber. Preuss. Akad. Wiss. Phys.-Math. Kl., 1929 (1929), 55–62 | Zbl

[6] V. I. Buslaev, “An analogue of Polya's theorem for piecewise holomorphic functions”, Mat. Sb., 206:12 (2015), 55–69 ; English transl. in Sb. Math., 206:12 (2015), 1707–1721 | DOI | MR | Zbl | DOI

[7] V. I. Buslaev, “Convergence of a limit periodic Schur continued fraction”, Mat. Zametki, 107:5 (2020), 643–656 ; English transl. in Math. Notes, 107:5 (2020), 701–712 | DOI | MR | Zbl | DOI

[8] L. Baratchart, S. Kupin, V. Lunot and M. Olivi, “Multipoint Schur algorithm and orthogonal rational functions, I: Convergence properties”, J. Anal. Math., 114 (2011), 207–253 | DOI | MR | Zbl

[9] V. I. Buslaev, “Schur's criterion for formal Newton series”, Mat. Zametki, 108:6 (2020), 920–924 ; English transl. in Math. Notes, 108:6 (2020), 884–888 | DOI | MR | Zbl | DOI

[10] V. I. Buslaev, “Necessary and sufficient conditions for extending a function to a Schur function”, Mat. Sb., 211:12 (2020), 3–48 ; English transl. in Sb. Math., 211:12 (2020), 1660–1703 | DOI | MR | Zbl | DOI