Mots-clés : Carathéodory function
@article{SM_2022_213_11_a1,
author = {V. I. Buslaev},
title = {Necessary and sufficient conditions for extending a~function to {a~Carath\'eodory} function},
journal = {Sbornik. Mathematics},
pages = {1488--1506},
year = {2022},
volume = {213},
number = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2022_213_11_a1/}
}
V. I. Buslaev. Necessary and sufficient conditions for extending a function to a Carathéodory function. Sbornik. Mathematics, Tome 213 (2022) no. 11, pp. 1488-1506. http://geodesic.mathdoc.fr/item/SM_2022_213_11_a1/
[1] J. Schur, “Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind. I”, J. Reine Angew. Math., 1917:147 (1917), 205–232 ; II, 1918:148 (1918), 122–145 | DOI | MR | Zbl | DOI | MR
[2] C. Carathéodory, “Über den Variabilitätsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen”, Math. Ann., 64:1 (1907), 95–115 | DOI | MR | Zbl
[3] O. Toeplitz, “Über die Fourier'sche Entwickelung pozitiver Funktionen”, Rend. Circ. Mat. Palermo, 32 (1911), 191–192 | DOI | Zbl
[4] V. I. Buslaev, “Schur's criterion for formal power series”, Mat. Sb., 210:11 (2019), 58–75 ; English transl. in Sb. Math., 210:11 (2019), 1563–1580 | DOI | MR | Zbl | DOI
[5] G. Pólya, “Beitrag zur Verallgemeinerung des Verzerrungssatzes auf mehrfach zusammenhängende Gebiete. III”, Sitzungsber. Preuss. Akad. Wiss. Phys.-Math. Kl., 1929 (1929), 55–62 | Zbl
[6] V. I. Buslaev, “An analogue of Polya's theorem for piecewise holomorphic functions”, Mat. Sb., 206:12 (2015), 55–69 ; English transl. in Sb. Math., 206:12 (2015), 1707–1721 | DOI | MR | Zbl | DOI
[7] V. I. Buslaev, “Convergence of a limit periodic Schur continued fraction”, Mat. Zametki, 107:5 (2020), 643–656 ; English transl. in Math. Notes, 107:5 (2020), 701–712 | DOI | MR | Zbl | DOI
[8] L. Baratchart, S. Kupin, V. Lunot and M. Olivi, “Multipoint Schur algorithm and orthogonal rational functions, I: Convergence properties”, J. Anal. Math., 114 (2011), 207–253 | DOI | MR | Zbl
[9] V. I. Buslaev, “Schur's criterion for formal Newton series”, Mat. Zametki, 108:6 (2020), 920–924 ; English transl. in Math. Notes, 108:6 (2020), 884–888 | DOI | MR | Zbl | DOI
[10] V. I. Buslaev, “Necessary and sufficient conditions for extending a function to a Schur function”, Mat. Sb., 211:12 (2020), 3–48 ; English transl. in Sb. Math., 211:12 (2020), 1660–1703 | DOI | MR | Zbl | DOI