The convex hull and the Carath\'eodory number of a~set in terms of the metric projection operator
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 213 (2022) no. 10, pp. 1470-1486
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We prove that each point of the convex hull of a compact set $M$ in a smooth Banach space $X$ can be approximated arbitrarily well by convex combinations of best approximants from $M$ to $x$ (values of the metric projection operator $P_M(x)$), where $x \in X$. As a corollary, we show that the Carathéodory number of a compact set $M \subset X$ with at most $k$-valued metric projection $P_M$ is majorized by $k$, that is, each point in the convex hull of $M$ lies in the convex hull of at most $k$ points of $M$.
Bibliography: 26 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
metric projection, convex hull, Banach space, smoothness, Minkowski functional, Carathéodory number.
                    
                    
                    
                  
                
                
                @article{SM_2022_213_10_a6,
     author = {K. S. Shklyaev},
     title = {The convex hull and the {Carath\'eodory} number of a~set in terms of the metric projection operator},
     journal = {Sbornik. Mathematics},
     pages = {1470--1486},
     publisher = {mathdoc},
     volume = {213},
     number = {10},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2022_213_10_a6/}
}
                      
                      
                    TY - JOUR AU - K. S. Shklyaev TI - The convex hull and the Carath\'eodory number of a~set in terms of the metric projection operator JO - Sbornik. Mathematics PY - 2022 SP - 1470 EP - 1486 VL - 213 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2022_213_10_a6/ LA - en ID - SM_2022_213_10_a6 ER -
K. S. Shklyaev. The convex hull and the Carath\'eodory number of a~set in terms of the metric projection operator. Sbornik. Mathematics, Tome 213 (2022) no. 10, pp. 1470-1486. http://geodesic.mathdoc.fr/item/SM_2022_213_10_a6/
