The convex hull and the Carath\'eodory number of a~set in terms of the metric projection operator
Sbornik. Mathematics, Tome 213 (2022) no. 10, pp. 1470-1486

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that each point of the convex hull of a compact set $M$ in a smooth Banach space $X$ can be approximated arbitrarily well by convex combinations of best approximants from $M$ to $x$ (values of the metric projection operator $P_M(x)$), where $x \in X$. As a corollary, we show that the Carathéodory number of a compact set $M \subset X$ with at most $k$-valued metric projection $P_M$ is majorized by $k$, that is, each point in the convex hull of $M$ lies in the convex hull of at most $k$ points of $M$. Bibliography: 26 titles.
Keywords: metric projection, convex hull, Banach space, smoothness, Minkowski functional, Carathéodory number.
@article{SM_2022_213_10_a6,
     author = {K. S. Shklyaev},
     title = {The convex hull and the {Carath\'eodory} number of a~set in terms of the metric projection operator},
     journal = {Sbornik. Mathematics},
     pages = {1470--1486},
     publisher = {mathdoc},
     volume = {213},
     number = {10},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2022_213_10_a6/}
}
TY  - JOUR
AU  - K. S. Shklyaev
TI  - The convex hull and the Carath\'eodory number of a~set in terms of the metric projection operator
JO  - Sbornik. Mathematics
PY  - 2022
SP  - 1470
EP  - 1486
VL  - 213
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2022_213_10_a6/
LA  - en
ID  - SM_2022_213_10_a6
ER  - 
%0 Journal Article
%A K. S. Shklyaev
%T The convex hull and the Carath\'eodory number of a~set in terms of the metric projection operator
%J Sbornik. Mathematics
%D 2022
%P 1470-1486
%V 213
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2022_213_10_a6/
%G en
%F SM_2022_213_10_a6
K. S. Shklyaev. The convex hull and the Carath\'eodory number of a~set in terms of the metric projection operator. Sbornik. Mathematics, Tome 213 (2022) no. 10, pp. 1470-1486. http://geodesic.mathdoc.fr/item/SM_2022_213_10_a6/