Uniformly and locally convex asymmetric spaces
Sbornik. Mathematics, Tome 213 (2022) no. 10, pp. 1444-1469

Voir la notice de l'article provenant de la source Math-Net.Ru

The nonemptyness of the intersections of nested systems of convex bounded closed subsets of uniformly convex asymmetric spaces is studied. The density properties of the points of existence and points of approximative uniqueness are examined for nonempty closed subsets of uniformly convex asymmetric spaces. Problems of the existence and stability of Chebyshev centres are considered; the relationships between $\gamma$-suns, suns and the existence of best approximants are investigated. Sufficient conditions for radial $\delta$-solarity are obtained. Bibliography: 27 titles.
Keywords: asymmetric space, uniformly convex space, Chebyshev centre, approximative uniqueness, convex set, sun.
@article{SM_2022_213_10_a5,
     author = {I. G. Tsar'kov},
     title = {Uniformly and locally convex asymmetric spaces},
     journal = {Sbornik. Mathematics},
     pages = {1444--1469},
     publisher = {mathdoc},
     volume = {213},
     number = {10},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2022_213_10_a5/}
}
TY  - JOUR
AU  - I. G. Tsar'kov
TI  - Uniformly and locally convex asymmetric spaces
JO  - Sbornik. Mathematics
PY  - 2022
SP  - 1444
EP  - 1469
VL  - 213
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2022_213_10_a5/
LA  - en
ID  - SM_2022_213_10_a5
ER  - 
%0 Journal Article
%A I. G. Tsar'kov
%T Uniformly and locally convex asymmetric spaces
%J Sbornik. Mathematics
%D 2022
%P 1444-1469
%V 213
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2022_213_10_a5/
%G en
%F SM_2022_213_10_a5
I. G. Tsar'kov. Uniformly and locally convex asymmetric spaces. Sbornik. Mathematics, Tome 213 (2022) no. 10, pp. 1444-1469. http://geodesic.mathdoc.fr/item/SM_2022_213_10_a5/