@article{SM_2022_213_10_a5,
author = {I. G. Tsar'kov},
title = {Uniformly and locally convex asymmetric spaces},
journal = {Sbornik. Mathematics},
pages = {1444--1469},
year = {2022},
volume = {213},
number = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2022_213_10_a5/}
}
I. G. Tsar'kov. Uniformly and locally convex asymmetric spaces. Sbornik. Mathematics, Tome 213 (2022) no. 10, pp. 1444-1469. http://geodesic.mathdoc.fr/item/SM_2022_213_10_a5/
[1] Ş. Cobzaş, Functional analysis in asymmetric normed spaces, Front. Math., Birkhäuser/Springer Basel AG, Basel, 2013, x+219 pp. | DOI | MR | Zbl
[2] V. Donjuán and N. Jonard-Pérez, “Separation axioms and covering dimension of asymmetric normed spaces”, Quaest. Math., 43:4 (2020), 467–491 | DOI | MR | Zbl
[3] S. Cobzaş, “Separation of convex sets and best approximation in spaces with asymmetric norm”, Quaest. Math., 27:3 (2004), 275–296 | DOI | MR | Zbl
[4] A. R. Alimov, “The Banach-Mazur theorem for spaces with an asymmetric distance”, Uspekhi Mat. Nauk, 58:2(350) (2003), 159–160 ; English transl. in Russian Math. Surveys, 58:2 (2003), 367–369 | DOI | MR | Zbl | DOI
[5] A. R. Alimov, “On the structure of the complements of Chebyshev sets”, Funktsional. Anal. i Prilozhen., 35:3 (2001), 19–27 ; English transl. in Funct. Anal. Appl., 35:3 (2001), 176–182 | DOI | MR | Zbl | DOI
[6] A. R. Alimov, “Convexity of bounded Chebyshev sets in finite-dimensional spaces with asymmetric norm”, Izv. Saratov. Univ. (N.S.) Ser. Mat. Mekh. Informat., 14:4(2) (2014), 489–497 (Russian) | DOI | Zbl
[7] I. G. Tsar'kov, “Approximative properties of sets and continuous selections”, Mat. Sb., 211:8 (2020), 132–157 ; English transl. in Sb. Math., 211:8 (2020), 1190–1211 | DOI | MR | Zbl | DOI
[8] I. G. Tsar'kov, “Weakly monotone sets and continuous selection in asymmetric spaces”, Mat. Sb., 210:9 (2019), 129–152 ; English transl. in Sb. Math., 210:9 (2019), 1326–1347 | DOI | MR | Zbl | DOI
[9] I. G. Tsar'kov, “Continuous selections for metric projection operators and for their generalizations”, Izv. Ross. Akad. Nauk Ser. Mat., 82:4 (2018), 199–224 ; English transl. in Izv. Math., 82:4 (2018), 837–859 | DOI | MR | Zbl | DOI
[10] I. G. Tsar'kov, “Continuous selections in asymmetric spaces”, Mat. Sb., 209:4 (2018), 95–116 ; English transl. in Sb. Math., 209:4 (2018), 560–579 | DOI | MR | Zbl | DOI
[11] I. G. Tsar'kov, “Properties of monotone path-connected sets”, Izv. Ross. Akad. Nauk. Ser. Mat., 85:2 (2021), 142–171 ; English transl. in Izv. Math., 85:2 (2021), 306–331 | DOI | MR | Zbl | DOI
[12] I. G. Tsar'kov, “Uniform convexity in nonsymmetric spaces”, Mat. Zametki, 110:5 (2021), 773–785 ; English transl. in Math. Notes, 110:5 (2021), 773–783 | DOI | MR | Zbl | DOI
[13] G. G. Magaril-Il'yaev and V. M. Tikhomirov, Convex analysis: theory and applications, 3d revised ed., Librokom, Moscow, 2011, 176 pp.; English transl. of 2nd ed., Transl. Math. Monogr., 222, Amer. Math. Soc., Providence, RI, 2003, viii+183 pp. | MR | Zbl
[14] M. G. Kreĭn, “The $L$-problem in an abstract linear normed space”, Some questions in the theory of moments, GONTI, Kharkov, 1938, 171–199; English transl., Transl. Math. Monogr., 2, Amer. Math. Soc., Providence, RI, 1962, 175–204 | MR | Zbl
[15] H. König, “Sublineare Funktionale”, Arch. Math. (Basel), 23 (1972), 500–508 | DOI | MR | Zbl
[16] H. König, “Sublinear functionals and conical measures”, Arch. Math. (Basel), 77:1 (2001), 56–64 | DOI | MR | Zbl
[17] V. F. Babenko, “Nonsymmetric approximation in spaces of integrable functions”, Ukrain. Mat. Zh., 34:4 (1982), 409–416 ; English transl. in Ukrainian Math. J., 34:4 (1982), 331–336 | MR | Zbl | DOI
[18] E. P. Dolzhenko and E. A. Sevast'yanov, “Approximations with a sign-sensitive weight: existence and uniqueness theorems”, Izv. Ross. Akad. Nauk Ser. Mat., 62:6 (1998), 59–102 ; English transl. in Izv. Math., 62:6 (1998), 1127–1168 | DOI | MR | Zbl | DOI
[19] E. P. Dolzhenko and E. A. Sevast'yanov, “Approximations with a sign-sensitive weight. Stability, applications to the theory of snakes and Hausdorff approximations”, Izv. Ross. Akad. Nauk Ser. Mat., 63:3 (1999), 77–118 ; English transl. in Izv. Math., 63:3 (1999), 495–534 | DOI | MR | Zbl | DOI
[20] L. Collatz and W. Krabs, Approximationstheorie. Tschebyscheffsche Approximation mit Anwendungen, B. G. Teubner, Stuttgart, 1973, 208 pp. | MR | Zbl
[21] R. C. Flagg and R. D. Kopperman, “The asymmetric topology of computer science”, Mathematical foundations of programming semantics (New Orleans, LA 1993), Lecture Notes in Comput. Sci., 802, Springer, Berlin, 1993, 544–553 | DOI | MR | Zbl
[22] P. A. Borodin, “Quasiorthogonal sets and conditions for a Banach space to be a Hilbert space”, Mat. Sb., 188:8 (1997), 63–74 ; English transl. in Sb. Math., 188:8 (1997), 1171–1182 | DOI | MR | Zbl | DOI
[23] P. A. Borodin, “The Banach-Mazur theorem for spaces with asymmetric norm”, Mat. Zametki, 69:3 (2001), 329–337 ; English transl. in Math. Notes, 69:3 (2001), 298–305 | DOI | MR | Zbl | DOI
[24] G. E. Ivanov and M. S. Lopushanski, “Well-posedness of approximation and optimization problems for weakly convex sets and functions”, Fundam. Prikl. Mat., 18:5 (2013), 89–118 ; English transl. in J. Math. Sci. (N.Y.), 209:1 (2015), 66–87 | MR | Zbl | DOI
[25] G. E. Ivanov and M. S. Lopushanski, “Approximation properties of weakly convex sets in spaces with asymmetric seminorm”, Tr. Moskov. Fiz. Tekhn. Inst., 4:4 (2012), 94–104 (Russian)
[26] A. R. Alimov and I. G. Tsar'kov, “Chebyshev centres, Jung constants, and their applications”, Uspekhi Mat. Nauk, 74:5(449) (2019), 3–82 ; English transl. in Russian Math. Surveys, 74:5 (2019), 775–849 | DOI | MR | Zbl | DOI
[27] A. R. Alimov and I. G. Tsar'kov, “Connectedness and solarity in problems of best and near-best approximation”, Uspekhi Mat. Nauk, 71:1(427) (2016), 3–84 ; English transl. in Russian Math. Surveys, 71:1 (2016), 1–77 | DOI | MR | Zbl | DOI