Some applications of growth in $\mathrm{SL}_2(\pmb{\mathbb{F}}_p)$ to the proof of modular versions of Zaremba's conjecture
Sbornik. Mathematics, Tome 213 (2022) no. 10, pp. 1415-1435 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using growth in $\mathrm{SL}_2(\mathbb{F}_p)$ we prove that for every prime number $p$ and any positive integer $u$ there are positive integers $q=O(p^{2+\varepsilon})$, $\varepsilon > 0$, $q \equiv u \pmod{p}$, and $a < p$, $(a, p)=1$, such that the partial quotients of the continued fraction of $a/q$ are bounded by an absolute constant. Bibliography: 21 titles.
Keywords: continued fractions, growth in groups.
Mots-clés : Zaremba conjecture
@article{SM_2022_213_10_a3,
     author = {M. V. Lyamkin},
     title = {Some applications of growth in $\mathrm{SL}_2(\pmb{\mathbb{F}}_p)$ to the proof of modular versions of {Zaremba's} conjecture},
     journal = {Sbornik. Mathematics},
     pages = {1415--1435},
     year = {2022},
     volume = {213},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2022_213_10_a3/}
}
TY  - JOUR
AU  - M. V. Lyamkin
TI  - Some applications of growth in $\mathrm{SL}_2(\pmb{\mathbb{F}}_p)$ to the proof of modular versions of Zaremba's conjecture
JO  - Sbornik. Mathematics
PY  - 2022
SP  - 1415
EP  - 1435
VL  - 213
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2022_213_10_a3/
LA  - en
ID  - SM_2022_213_10_a3
ER  - 
%0 Journal Article
%A M. V. Lyamkin
%T Some applications of growth in $\mathrm{SL}_2(\pmb{\mathbb{F}}_p)$ to the proof of modular versions of Zaremba's conjecture
%J Sbornik. Mathematics
%D 2022
%P 1415-1435
%V 213
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2022_213_10_a3/
%G en
%F SM_2022_213_10_a3
M. V. Lyamkin. Some applications of growth in $\mathrm{SL}_2(\pmb{\mathbb{F}}_p)$ to the proof of modular versions of Zaremba's conjecture. Sbornik. Mathematics, Tome 213 (2022) no. 10, pp. 1415-1435. http://geodesic.mathdoc.fr/item/SM_2022_213_10_a3/

[1] J. Bourgain and A. Kontorovich, “On Zaremba's conjecture”, Ann. of Math. (2), 180:1 (2014), 137–196 | DOI | MR | Zbl

[2] J. Bourgain and A. Gamburd, “Uniform expansion bounds for Cayley graphs of $\operatorname{SL}_2(\mathbb{F}_p)$”, Ann. of Math. (2), 167:2 (2008), 625–642 | DOI | MR | Zbl

[3] L. E. Dickson, “Theory of linear groups in an arbitrary field”, Trans. Amer. Math. Soc., 2:4 (1901), 363–394 | DOI | MR | Zbl

[4] L. E. Dickson, Linear groups: With an exposition of the Galois field theory, With an introduction by W. Magnus, Dover Publications, Inc., New York, 1958, xvi+312 pp. | MR | Zbl

[5] W. T. Gowers, “Quasirandom groups”, Combin. Probab. Comput., 17:3 (2008), 363–387 | DOI | MR | Zbl

[6] H. A. Helfgott, “Growth and generation in $\operatorname{SL}_2(\mathbb{Z}/p\mathbb{Z})$”, Ann. of Math. (2), 167:2 (2008), 601–623 | DOI | MR | Zbl

[7] D. A. Hensley, “The distribution $\operatorname{mod} n$ of fractions with bounded partial quotients”, Pacific J. Math., 166:1 (1994), 43–54 | DOI | MR | Zbl

[8] D. Hensley, “The distribution of badly approximable rationals and continuants with bounded digits. II”, J. Number Theory, 34:3 (1990), 293–334 | DOI | MR | Zbl

[9] D. Hensley, “The distribution of badly approximable numbers and continuants with bounded digits”, Théorie des nombres (Quebec, PQ 1987), de Gruyter, Berlin, 1989, 371–385 | DOI | MR | Zbl

[10] A. Ya. Khinchin, Continued fractions, 3d ed., Fizmatgiz, Leningrad, 1961, 112 pp. ; English transl., The Univ. of Chicago Press, Chicago, IL–London, 1964, xi+95 pp. | MR | Zbl | MR | Zbl

[11] R. A. Horn and C. R. Johnson, Matrix analysis, Cambridge Univ. Press, Cambridge, 1985, xiii+561 pp. | DOI | MR | Zbl

[12] O. Jenkinson and M. Pollicott, “Computing the dimension of dynamically defined sets: $E_2$ and bounded continued fractions”, Ergodic Theory Dynam. Systems, 21:5 (2001), 1429–1445 | DOI | MR | Zbl

[13] A. Kontorovich, “Levels of distribution and the affine sieve”, Ann. Fac. Sci. Toulouse Math. (6), 23:5 (2014), 933–966 | DOI | MR | Zbl

[14] E. Kowalski, “Explicit growth and expansion for $\operatorname{SL}_2$”, Int. Math. Res. Not. IMRN, 2013:24 (2013), 5645–5708 | DOI | MR | Zbl

[15] M. Magee, Hee Oh and D. Winter, “Uniform congruence counting for Schottky semigroups in $\operatorname{SL}_2(\mathbb{Z})$”, J. Reine Angew. Math., 2019:753 (2019), 89–135 | DOI | MR | Zbl

[16] N. Moshchevitin, B. Murphy and I. Shkredov, “Popular products and continued fractions”, Israel J. Math., 238:2 (2020), 807–835 | DOI | MR | Zbl

[17] N. G. Moshchevitin and I. D. Shkredov, “On a modular form of Zaremba's conjecture”, Pacific J. Math., 309:1 (2020), 195–211 | DOI | MR | Zbl

[18] M. A. Naimark, Theory of group representations, Nauka, Moscow, 1976, 560 pp. ; English transl., M. A. Naimark and A. I. Stern (Shtern), Theory of group representations, Grundlehren Math. Wiss., 246, Springer-Verlag, New York, 1982, ix+568 pp. | MR | Zbl | MR | Zbl

[19] M. Rudnev and I. D. Shkredov, “On the growth rate in $\operatorname{SL}_2(\mathbb{F}_p)$, the affine group and sum-product type implications”, Mathematika, 68:3 (2022), 738–783 ; (2018), arXiv: 1812.01671 | DOI | MR

[20] I. D. Shkredov, Growth in Chevalley groups relatively to parabolic subgroups and some applications, 2020, arXiv: 2003.12785

[21] I. D. Shkredov, “Non-commutative methods in additive combinatorics and number theory”, Uspekhi Mat. Nauk, 76:6(462) (2021), 119–180 ; English transl. in Russian Math. Surveys, 76:6 (2021), 1065–1122 | DOI | MR | Zbl | DOI