Some applications of growth in $\mathrm{SL}_2(\pmb{\mathbb{F}}_p)$ to the proof of modular versions of Zaremba's conjecture
Sbornik. Mathematics, Tome 213 (2022) no. 10, pp. 1415-1435

Voir la notice de l'article provenant de la source Math-Net.Ru

Using growth in $\mathrm{SL}_2(\mathbb{F}_p)$ we prove that for every prime number $p$ and any positive integer $u$ there are positive integers $q=O(p^{2+\varepsilon})$, $\varepsilon > 0$, $q \equiv u \pmod{p}$, and $a p$, $(a, p)=1$, such that the partial quotients of the continued fraction of $a/q$ are bounded by an absolute constant. Bibliography: 21 titles.
Keywords: continued fractions, growth in groups.
Mots-clés : Zaremba conjecture
@article{SM_2022_213_10_a3,
     author = {M. V. Lyamkin},
     title = {Some applications of growth in $\mathrm{SL}_2(\pmb{\mathbb{F}}_p)$ to the proof of modular versions of {Zaremba's} conjecture},
     journal = {Sbornik. Mathematics},
     pages = {1415--1435},
     publisher = {mathdoc},
     volume = {213},
     number = {10},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2022_213_10_a3/}
}
TY  - JOUR
AU  - M. V. Lyamkin
TI  - Some applications of growth in $\mathrm{SL}_2(\pmb{\mathbb{F}}_p)$ to the proof of modular versions of Zaremba's conjecture
JO  - Sbornik. Mathematics
PY  - 2022
SP  - 1415
EP  - 1435
VL  - 213
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2022_213_10_a3/
LA  - en
ID  - SM_2022_213_10_a3
ER  - 
%0 Journal Article
%A M. V. Lyamkin
%T Some applications of growth in $\mathrm{SL}_2(\pmb{\mathbb{F}}_p)$ to the proof of modular versions of Zaremba's conjecture
%J Sbornik. Mathematics
%D 2022
%P 1415-1435
%V 213
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2022_213_10_a3/
%G en
%F SM_2022_213_10_a3
M. V. Lyamkin. Some applications of growth in $\mathrm{SL}_2(\pmb{\mathbb{F}}_p)$ to the proof of modular versions of Zaremba's conjecture. Sbornik. Mathematics, Tome 213 (2022) no. 10, pp. 1415-1435. http://geodesic.mathdoc.fr/item/SM_2022_213_10_a3/