Some applications of growth in $\mathrm{SL}_2(\pmb{\mathbb{F}}_p)$ to the proof of modular versions of Zaremba's conjecture
Sbornik. Mathematics, Tome 213 (2022) no. 10, pp. 1415-1435
Voir la notice de l'article provenant de la source Math-Net.Ru
Using growth in $\mathrm{SL}_2(\mathbb{F}_p)$ we prove that for every prime number $p$ and any positive integer $u$ there are positive integers $q=O(p^{2+\varepsilon})$, $\varepsilon > 0$, $q \equiv u \pmod{p}$, and $a p$, $(a, p)=1$, such that the partial quotients of the continued fraction of $a/q$ are bounded by an absolute constant.
Bibliography: 21 titles.
Keywords:
continued fractions, growth in groups.
Mots-clés : Zaremba conjecture
Mots-clés : Zaremba conjecture
@article{SM_2022_213_10_a3,
author = {M. V. Lyamkin},
title = {Some applications of growth in $\mathrm{SL}_2(\pmb{\mathbb{F}}_p)$ to the proof of modular versions of {Zaremba's} conjecture},
journal = {Sbornik. Mathematics},
pages = {1415--1435},
publisher = {mathdoc},
volume = {213},
number = {10},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2022_213_10_a3/}
}
TY - JOUR
AU - M. V. Lyamkin
TI - Some applications of growth in $\mathrm{SL}_2(\pmb{\mathbb{F}}_p)$ to the proof of modular versions of Zaremba's conjecture
JO - Sbornik. Mathematics
PY - 2022
SP - 1415
EP - 1435
VL - 213
IS - 10
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/SM_2022_213_10_a3/
LA - en
ID - SM_2022_213_10_a3
ER -
%0 Journal Article
%A M. V. Lyamkin
%T Some applications of growth in $\mathrm{SL}_2(\pmb{\mathbb{F}}_p)$ to the proof of modular versions of Zaremba's conjecture
%J Sbornik. Mathematics
%D 2022
%P 1415-1435
%V 213
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2022_213_10_a3/
%G en
%F SM_2022_213_10_a3
M. V. Lyamkin. Some applications of growth in $\mathrm{SL}_2(\pmb{\mathbb{F}}_p)$ to the proof of modular versions of Zaremba's conjecture. Sbornik. Mathematics, Tome 213 (2022) no. 10, pp. 1415-1435. http://geodesic.mathdoc.fr/item/SM_2022_213_10_a3/