Isometric embeddings of bounded metric spaces in the Gromov-Hausdorff class
Sbornik. Mathematics, Tome 213 (2022) no. 10, pp. 1400-1414

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that any bounded metric space can be embedded isometrically in the Gromov-Hausdorff metric class $\operatorname{\mathcal{G\!H}}$. This is a consequence of the description of the local geometry of $\operatorname{\mathcal{G\!H}}$ in a sufficiently small neighbourhood of a generic metric space, which is of independent interest. We use the techniques of optimal correspondences and their distortions. Bibliography: 22 titles.
Keywords: Gromov-Hausdorff distance, class of all metric spaces, von Neumann-Bernays-Gödel axioms, isometric embedding of a bounded metric space, generic metric space.
@article{SM_2022_213_10_a2,
     author = {A. O. Ivanov and A. A. Tuzhilin},
     title = {Isometric embeddings of bounded metric spaces in the {Gromov-Hausdorff} class},
     journal = {Sbornik. Mathematics},
     pages = {1400--1414},
     publisher = {mathdoc},
     volume = {213},
     number = {10},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2022_213_10_a2/}
}
TY  - JOUR
AU  - A. O. Ivanov
AU  - A. A. Tuzhilin
TI  - Isometric embeddings of bounded metric spaces in the Gromov-Hausdorff class
JO  - Sbornik. Mathematics
PY  - 2022
SP  - 1400
EP  - 1414
VL  - 213
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2022_213_10_a2/
LA  - en
ID  - SM_2022_213_10_a2
ER  - 
%0 Journal Article
%A A. O. Ivanov
%A A. A. Tuzhilin
%T Isometric embeddings of bounded metric spaces in the Gromov-Hausdorff class
%J Sbornik. Mathematics
%D 2022
%P 1400-1414
%V 213
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2022_213_10_a2/
%G en
%F SM_2022_213_10_a2
A. O. Ivanov; A. A. Tuzhilin. Isometric embeddings of bounded metric spaces in the Gromov-Hausdorff class. Sbornik. Mathematics, Tome 213 (2022) no. 10, pp. 1400-1414. http://geodesic.mathdoc.fr/item/SM_2022_213_10_a2/