Isometric embeddings of bounded metric spaces in the Gromov-Hausdorff class
Sbornik. Mathematics, Tome 213 (2022) no. 10, pp. 1400-1414 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that any bounded metric space can be embedded isometrically in the Gromov-Hausdorff metric class $\operatorname{\mathcal{G\!H}}$. This is a consequence of the description of the local geometry of $\operatorname{\mathcal{G\!H}}$ in a sufficiently small neighbourhood of a generic metric space, which is of independent interest. We use the techniques of optimal correspondences and their distortions. Bibliography: 22 titles.
Keywords: Gromov-Hausdorff distance, class of all metric spaces, isometric embedding of a bounded metric space, generic metric space.
Mots-clés : von Neumann-Bernays-Gödel axioms
@article{SM_2022_213_10_a2,
     author = {A. O. Ivanov and A. A. Tuzhilin},
     title = {Isometric embeddings of bounded metric spaces in the {Gromov-Hausdorff} class},
     journal = {Sbornik. Mathematics},
     pages = {1400--1414},
     year = {2022},
     volume = {213},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2022_213_10_a2/}
}
TY  - JOUR
AU  - A. O. Ivanov
AU  - A. A. Tuzhilin
TI  - Isometric embeddings of bounded metric spaces in the Gromov-Hausdorff class
JO  - Sbornik. Mathematics
PY  - 2022
SP  - 1400
EP  - 1414
VL  - 213
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2022_213_10_a2/
LA  - en
ID  - SM_2022_213_10_a2
ER  - 
%0 Journal Article
%A A. O. Ivanov
%A A. A. Tuzhilin
%T Isometric embeddings of bounded metric spaces in the Gromov-Hausdorff class
%J Sbornik. Mathematics
%D 2022
%P 1400-1414
%V 213
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2022_213_10_a2/
%G en
%F SM_2022_213_10_a2
A. O. Ivanov; A. A. Tuzhilin. Isometric embeddings of bounded metric spaces in the Gromov-Hausdorff class. Sbornik. Mathematics, Tome 213 (2022) no. 10, pp. 1400-1414. http://geodesic.mathdoc.fr/item/SM_2022_213_10_a2/

[1] F. Hausdorff, Grundzüge der Mengenlehre, Veit Comp., Leipzig, 1914, viii+476 pp. | MR | Zbl

[2] D. A. Edwards, “The structure of superspace”, Studies in topology (Univ. North Carolina, Charlotte, NC 1974), Academic Press, New York, 1975, 121–133 | DOI | MR | Zbl

[3] M. Gromov, “Groups of polynomial growth and expanding maps”, Inst. Hautes Études Sci. Publ. Math., 53 (1981), 53–78 | DOI | MR | Zbl

[4] A. O. Ivanov, N. K. Nikolaeva and A. A. Tuzhilin, “The Gromov-Hausdorff metric on the space of compact metric spaces is strictly intrinsic”, Mat. Zametki, 100:6 (2016), 947–950 ; English transl. in Math. Notes, 100:6 (2016), 883–885 | DOI | MR | Zbl | DOI

[5] A. O. Ivanov and A. A. Tuzhilin, “Isometry group of Gromov-Hausdorff space”, Mat. Vesnik, 71:1–2 (2019), 123–154 | MR | Zbl

[6] D. Burago, Yu. Burago and S. Ivanov, A course in metric geometry, Grad. Stud. Math., 33, Amer. Math. Soc., Providence, RI, 2001, xiv+415 pp. | DOI | MR | Zbl

[7] A. O Ivanov and A. A. Tuzhilin, Geometry of Hausdorff and Gromov-Hausdorff distances: The case of compact spaces, Board of Trustees of the Faculty of Mechanics and Mathematics of Moscow State University, Moscow, 2017, 111 pp. (Russian)

[8] D. Jansen, Notes on pointed Gromov-Hausdorff convergence, 2017, arXiv: 1703.09595

[9] D. A. Herron, “Gromov-Hausdorff distance for pointed metric spaces”, J. Anal., 24:1 (2016), 1–38 | DOI | MR | Zbl

[10] S. I. Borzov, A. O. Ivanov and A. A. Tuzhilin, “Geometry of the Gromov-Hausdorff distance on the class of all metric spaces”, Mat. Sb., 213:5 (2022), 68–87 ; English transl. in Sb. Math., 213:5 (2022), 641–658; Extendability of metric segments in Gromov-Hausdorff distance, arXiv: 2009.00458 | DOI | MR

[11] S. A. Bogaty and A. A. Tuzhilin, Gromov-Hausdorff class: its completeness and cloud geometry, 2021, arXiv: 2110.06101

[12] A. Ivanov, R. Tsvetnikov and A. Tuzhilin, “Path connectivity of spheres in the Gromov-Hausdorff class”, Topology Appl. (to appear); 2022, arXiv: 2111.06709

[13] P. Ghanaat, Gromov-Hausdorff distance and applications, Summer school “Metric geometry” (Les Diablerets, August 25–30 2013), 2013 https://homeweb.unifr.ch/ghanaatp/pub/gromov-hausdorff.pdf

[14] D. S. Grigor'ev, A. O. Ivanov and A. A. Tuzhilin, “Gromov-Hausdorff distance to simplexes”, Chebyshevskii Sb., 20:2 (2019), 108–122 ; English transl., (2019), arXiv: 1906.09644 | DOI | MR | Zbl

[15] A. Ivanov, S. Iliadis and A. Tuzhilin, Realizations of Gromov-Hausdorff distance, 2016, arXiv: 1603.08850

[16] S. Chowdhury and F. Memoli, Explicit geodesics in Gromov-Hausdorff space, 2016, arXiv: 1603.02385

[17] A. O. Ivanov and A. A. Tuzhilin, “Local structure of Gromov-Hausdorff space around generic finite metric spaces”, Lobachevskii J. Math., 38:6 (2017), 998–1006 ; Local structure of Gromov-Hausdorff space near finite metric spaces in general position, 2016, arXiv: 1611.04484 | DOI | MR | Zbl

[18] A. M. Filin, “Local geometry of the Gromov-Hausdorff metric space and totally asymmetric finite metric spaces”, Fundam. Prikl. Mat., 22:6 (2019), 263–272 ; English transl. in J. Math. Sci. (N.Y.), 259:5 (2021), 754–760 | MR | Zbl | DOI

[19] S. Roman, Lattices and ordered sets, Springer, New York, 2008, xvi+305 pp. | DOI | MR | Zbl

[20] S. Iliadis, A. Ivanov and A. Tuzhilin, “Local structure of Gromov-Hausdorff space, and isometric embeddings of finite metric spaces into this space”, Topology Appl., 221 (2017), 393–398 | DOI | MR | Zbl

[21] C. Kuratowski, “Quelques problèmes concernant les espaces métriques non-séparables”, Fundamenta Math., 25 (1935), 534–545 | DOI | Zbl

[22] A. O. Ivanov and A. A. Tuzhilin, “One-dimensional Gromov minimal filling problem”, Mat. Sb., 203:5 (2012), 65–118 ; English transl. in Sb. Math., 203:5 (2012), 677–726 | DOI | MR | Zbl | DOI