Isometric embeddings of bounded metric spaces in the Gromov-Hausdorff class
Sbornik. Mathematics, Tome 213 (2022) no. 10, pp. 1400-1414
Voir la notice de l'article provenant de la source Math-Net.Ru
We show that any bounded metric space can be embedded isometrically in the Gromov-Hausdorff metric class $\operatorname{\mathcal{G\!H}}$. This is a consequence of the description of the local geometry of $\operatorname{\mathcal{G\!H}}$ in a sufficiently small neighbourhood of a generic metric space, which is of independent interest. We use the techniques of optimal correspondences and their distortions.
Bibliography: 22 titles.
Keywords:
Gromov-Hausdorff distance, class of all metric spaces, von Neumann-Bernays-Gödel axioms, isometric embedding of a bounded metric space, generic metric space.
@article{SM_2022_213_10_a2,
author = {A. O. Ivanov and A. A. Tuzhilin},
title = {Isometric embeddings of bounded metric spaces in the {Gromov-Hausdorff} class},
journal = {Sbornik. Mathematics},
pages = {1400--1414},
publisher = {mathdoc},
volume = {213},
number = {10},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2022_213_10_a2/}
}
TY - JOUR AU - A. O. Ivanov AU - A. A. Tuzhilin TI - Isometric embeddings of bounded metric spaces in the Gromov-Hausdorff class JO - Sbornik. Mathematics PY - 2022 SP - 1400 EP - 1414 VL - 213 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2022_213_10_a2/ LA - en ID - SM_2022_213_10_a2 ER -
A. O. Ivanov; A. A. Tuzhilin. Isometric embeddings of bounded metric spaces in the Gromov-Hausdorff class. Sbornik. Mathematics, Tome 213 (2022) no. 10, pp. 1400-1414. http://geodesic.mathdoc.fr/item/SM_2022_213_10_a2/