@article{SM_2022_213_10_a0,
author = {D. I. Borisov and A. I. Mukhametrakhimova},
title = {Asymptotics for problems in perforated domains with {Robin} nonlinear condition on the boundaries of cavities},
journal = {Sbornik. Mathematics},
pages = {1318--1371},
year = {2022},
volume = {213},
number = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2022_213_10_a0/}
}
TY - JOUR AU - D. I. Borisov AU - A. I. Mukhametrakhimova TI - Asymptotics for problems in perforated domains with Robin nonlinear condition on the boundaries of cavities JO - Sbornik. Mathematics PY - 2022 SP - 1318 EP - 1371 VL - 213 IS - 10 UR - http://geodesic.mathdoc.fr/item/SM_2022_213_10_a0/ LA - en ID - SM_2022_213_10_a0 ER -
%0 Journal Article %A D. I. Borisov %A A. I. Mukhametrakhimova %T Asymptotics for problems in perforated domains with Robin nonlinear condition on the boundaries of cavities %J Sbornik. Mathematics %D 2022 %P 1318-1371 %V 213 %N 10 %U http://geodesic.mathdoc.fr/item/SM_2022_213_10_a0/ %G en %F SM_2022_213_10_a0
D. I. Borisov; A. I. Mukhametrakhimova. Asymptotics for problems in perforated domains with Robin nonlinear condition on the boundaries of cavities. Sbornik. Mathematics, Tome 213 (2022) no. 10, pp. 1318-1371. http://geodesic.mathdoc.fr/item/SM_2022_213_10_a0/
[1] A. G. Belyaev, In “Joint sessions of the Petrovskii Seminar on differential equations and mathematical problems of physics and the Moscow Mathematical Society (Thirteenth session, 2–5 February 1990)”, Uspekhi Mat. Nauk, 45:4(274) (1990), 123 ; English transl. in Russian Math. Surveys, 45:4 (1990), 140 | DOI
[2] G. A. Chechkin, Yu. O. Koroleva, A. Meidell and L.-E. Persson, “On the Friedrichs inequality in a domain perforated aperiodically along the boundary. Homogenization procedure. Asymptotics for parabolic problems”, Russ. J. Math. Phys., 16:1 (2009), 1–16 | DOI | MR | Zbl
[3] G. A. Chechkin, T. A. Chechkina, C. D'Apice and U. De Maio, “Homogenization in domains randomly perforated along the boundary”, Discrete Contin. Dyn. Syst. Ser. B, 12:4 (2009), 713–730 | DOI | MR | Zbl
[4] M. Lobo, O. A. Oleinik, M. E. Pérez and T. A. Shaposhnikova, “On homogenizations of solutions of boundary value problems in domains, perforated along manifolds”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 25:3–4 (1997), 611–629 | MR | Zbl
[5] M. Lobo, M. E. Pérez, V. V. Sukharev and T. A. Shaposhnikova, “Averaging of boundary-value problem in domain perforated along $(n-1)$-dimensional manifold with nonlinear third type boundary conditions on the boundary of cavities”, Dokl. Ross. Akad. Nauk, 436:2 (2011), 163–167 ; English transl. in Dokl. Math., 83:1 (2011), 34–38 | MR | Zbl | DOI
[6] D. Gómez, E. Pérez and T. A. Shaposhnikova, “On homogenization of nonlinear Robin type boundary conditions for cavities along manifolds and associated spectral problems”, Asymptot. Anal., 80:3–4 (2012), 289–322 | DOI | MR | Zbl
[7] D. Gómez, M. Lobo, M. E. Pérez and T. A. Shaposhnikova, “Averaging of variational inequalities for the Laplacian with nonlinear restrictions along manifolds”, Appl. Anal., 92:2 (2013), 218–237 | DOI | MR | Zbl
[8] Y. Amirat, O. Bodart, G. A. Chechkin and A. L. Piatnitski, “Asymptotics of a spectral-sieve problem”, J. Math. Anal. Appl., 435:2 (2016), 1652–1671 | DOI | MR | Zbl
[9] R. R. Gadyl'shin, A. L. Piatnitskii and G. A. Chechkin, “On the asymptotic behaviour of eigenvalues of a boundary-value problem in a planar domain of Steklov sieve type”, Izv. Ross. Akad. Nauk Ser. Mat., 82:6 (2018), 37–64 ; English transl. in Izv. Math., 82:6 (2018), 1108–1135 | DOI | MR | Zbl | DOI
[10] G. A. Chechkin, R. R. Gadyl'shin, C. D'Apice and U. De Maio, “On the Steklov problem in a domain perforated along a part of the boundary”, ESAIM Math. Model. Numer. Anal., 51:4 (2017), 1317–1342 | DOI | MR | Zbl
[11] M. N. Zubova and T. A. Shaposhnikova, “Homogenization limit for the diffusion equation in a domain perforated along $(n-1)$-dimensional manifold with dynamic conditions on the boundary of the perforations: critical case”, Dokl. Ross. Akad. Nauk, 486:1 (2019), 12–19 ; English transl. in Dokl. Math., 99:3 (2019), 245–251 | Zbl | DOI | MR
[12] J. I. Díaz, D. Gómez-Castro and T. A. Shaposhnikova, Nonlinear reaction-diffusion processes for nanocomposites. Anomalous improved homogenization, De Gruyter Ser. Nonlinear Anal. Appl., 39, De Gruyter, Berlin, 2021, xvi+179 pp. | DOI | MR | Zbl
[13] V. A. Marchenko and E. Ya. Khruslov, Boundary value problems in domains with fine-grained structure, Naukova Dumka, Kiev, 1974, 729 pp. (Russian) | MR | Zbl
[14] D. Borisov and G. Cardone, “Homogenization of the planar waveguide with frequently alternating boundary conditions”, J. Phys. A, 42:36 (2009), 365205, 21 pp. | DOI | MR | Zbl
[15] D. Borisov, R. Bunoiu and G. Cardone, “On a waveguide with frequently alternating boundary conditions: homogenized Neumann condition”, Ann. Henri Poincaré, 11:8 (2010), 1591–1627 | DOI | MR | Zbl
[16] D. Borisov, R. Bunoiu and G. Cardone, “On a waveguide with an infinite number of small windows”, C. R. Math. Acad. Sci. Paris, 349:1–2 (2011), 53–56 | DOI | MR | Zbl
[17] D. Borisov, R. Bunoiu and G. Cardone, “Homogenization and asymptotics for a waveguide with an infinite number of closely located small windows”, Probl. Mat. Anal., 58, Tamara Rozhkovskaya, Novosibirsk, 2011, 59–68 ; English transl., J. Math. Sci. (N.Y.), 176:6 (2011), 774–785 | MR | Zbl | DOI
[18] D. Borisov, R. Bunoiu and G. Cardone, “Waveguide with non-periodically alternating Dirichlet and Robin conditions: homogenization and asymptotics”, Z. Angew. Math. Phys., 64:3 (2013), 439–472 | DOI | MR | Zbl
[19] D. Borisov, G. Cardone, L. Faella and C. Perugia, “Uniform resolvent convergence for strip with fast oscillating boundary”, J. Differential Equations, 255:12 (2013), 4378–4402 | DOI | MR | Zbl
[20] T. F. Sharapov, “On the resolvent of multidimensional operators with frequently changing boundary conditions in the case of the homogenized Dirichlet condition”, Mat. Sb., 205:10 (2014), 125–160 ; English transl. in Sb. Math., 205:10 (2014), 1492–1527 | DOI | MR | Zbl | DOI
[21] D. I. Borisov and T. F. Sharapov, “On the resolvent of multidimensional operators with frequently alternating boundary conditions with the Robin homogenized condition”, Probl. Mat. Anal., 83, Tamara Rozhkovskaya, Novosibirsk, 2015, 3–40 ; English transl. in J. Math. Sci. (N.Y.), 213:4 (2016), 461–503 | MR | Zbl | DOI
[22] T. F. Sharapov, “On resolvent of multi-dimensional operators with frequent alternation of boundary conditions: critical case”, Ufim. Mat. Zh., 8:2 (2016), 66–96 ; English transl. in Ufa Math. J., 8:2 (2016), 65–94 | Zbl | DOI | MR
[23] D. Borisov, G. Cardone and T. Durante, “Homogenization and norm-resolvent convergence for elliptic operators in a strip perforated along a curve”, Proc. Roy. Soc. Edinburgh Sect. A, 146:6 (2016), 1115–1158 | DOI | MR | Zbl
[24] A. G. Belyaev, G. A. Chechkin and R. R. Gadyl'shin, “Effective membrane permeability: estimates and low concentration asymptotics”, SIAM J. Appl. Math., 60:1 (1999), 84–108 | DOI | MR | Zbl
[25] T. A. Mel'nyk and G. A. Chechkin, “Eigenvibrations of thick cascade junctions with ‘very heavy’ concentrated masses”, Izv. Ross. Akad. Nauk Ser. Mat., 79:3 (2015), 41–86 ; English transl. in Izv. Math., 79:3 (2015), 467–511 | DOI | MR | Zbl | DOI
[26] G. A. Chechkin, “Asymptotic expansions of eigenvalues and eigenfunctions of an elliptic operator in a domain with many “light” concentrated masses situated on the boundary. Two-dimensional case”, Izv. Ross. Akad. Nauk Ser. Mat., 69:4 (2005), 161–204 ; English transl. in Izv. Math., 69:4 (2005), 805–846 | DOI | MR | Zbl | DOI
[27] Y. Amirat, G. A. Chechkin and R. R. Gadyl'shin, “Asymptotics of simple eigenvalues and eigenfunctions for the Laplace operator in a domain with oscillating boundary”, Zh. Vychisl. Mat. Mat. Fiz., 46:1 (2006), 102–115 ; Comput. Math. Math. Phys., 46:1 (2006), 97–110 | MR | Zbl | DOI
[28] S. A. Nazarov, “Homogenization of Kirchhoff plates joined by rivets which are modeled by the Sobolev point conditions”, Algebra i Analiz, 32:2 (2020), 143–200 ; English transl. in St. Petersburg Math. J., 32:2 (2021), 307–348 | MR | Zbl | DOI
[29] D. I. Borisov and A. I. Mukhametrakhimova, “Uniform convergence and asymptotics for problems in domains finely perforated along a prescribed manifold in the case of the homogenized Dirichlet condition”, Mat. Sb., 212:8 (2021), 33–88 ; English transl. in Sb. Math., 212:8 (2021), 1068–1121 | DOI | MR | Zbl | DOI
[30] D. I. Borisov and A. I. Mukhametrakhimova, “Uniform convergence for problems with perforation along a fixed manifolds and with the third nonlinear boundary condition on the boundaries of the holes”, Algebra i Analiz (to appear) (Russian); arXiv: 2202.10767
[31] A. M. Il'in, Matching of asymptotic expansions of solutions of boundary value problems, Nauka, Moscow, 1989, 336 pp. ; English transl., Transl. Math. Monogr., 102, Amer. Math. Soc., Providence, RI, 1992, x+281 pp. | MR | Zbl | DOI | MR | Zbl
[32] N. Bakhvalov and G. Panasenko, Homogenisation: averaging processes in periodic media. Mathematical problems in the mechanics of composite materials, Nauka, Moscow, 1984, 352 pp. ; English transl., Math. Appl. (Soviet Ser.), 36, Kluwer Acad. Publ., Dordrecht, 1989, xxxvi+366 pp. | MR | Zbl | DOI | MR | Zbl
[33] O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and quasilinear elliptic equations, 2nd ed., Nauka, Moscow, 1973, 576 pp. ; English transl. of 1st ed., Academic Press, New York–London, 1968, xviii+495 pp. | MR | Zbl | MR | Zbl
[34] D. I. Borisov and A. I. Mukhametrakhimova, “The norm resolvent convergence for elliptic operators in multi-dimensional domains with small holes”, Probl. Mat. Anal., 92, Tamara Rozhkovskaya, Novosibirsk, 2018, 69–81 ; English transl. in J. Math. Sci. (N.Y.), 232:3 (2018), 283–298 | MR | Zbl | DOI
[35] V. S. Vladimirov, Equations of mathematical physics, 4th ed., Nauka, Moscow, 1981, 512 pp. ; English transl. of 1st ed., Pure Appl. Math., 3, Marcel Dekker, Inc., New York, 1971, vi+418 pp. | MR | MR | Zbl
[36] D. I. Borisov, “Discrete spectrum of an asymmetric pair of waveguides coupled through a window”, Mat. Sb., 197:4 (2006), 3–32 ; English transl. in Sb. Math., 197:4 (2006), 475–504 | DOI | MR | Zbl | DOI
[37] V. P. Mikhailov, Partial differential equations, Nauka, Moscow, 1976, 391 pp. ; English transl., Mir, Moscow, 1978, 396 pp. | MR | Zbl | MR | Zbl
[38] O. V. Besov, V. P. Il'in and S. M. Nikol'skii, Integral representations of functions and imbedding theorems, Nauka, Moscow, 1975, 480 pp. ; English transl., v. I, II, Scripta Series in Mathematics, V. H. Winston Sons, Washington, DC; Halsted Press [John Wiley Sons], New York–Toronto, ON–London, 1978, 1979, viii+345 pp., viii+311 pp. | MR | Zbl | MR | MR | Zbl