Mots-clés : configuration graph
@article{SM_2021_212_9_a6,
author = {Yu. L. Pavlov},
title = {The maximum tree of a~random forest in the configuration graph},
journal = {Sbornik. Mathematics},
pages = {1329--1346},
year = {2021},
volume = {212},
number = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2021_212_9_a6/}
}
Yu. L. Pavlov. The maximum tree of a random forest in the configuration graph. Sbornik. Mathematics, Tome 212 (2021) no. 9, pp. 1329-1346. http://geodesic.mathdoc.fr/item/SM_2021_212_9_a6/
[1] Yu. L. Pavlov, “Conditional configuration graphs with discrete power-law distribution of vertex degrees”, Sb. Math., 209:2 (2018), 258–275 | DOI | DOI | MR | Zbl
[2] B. Bollobás, “A probabilistic proof of an asymptotic formula for the number of labelled regular graphs”, European J. Combin., 1:4 (1980), 311–316 | DOI | MR | Zbl
[3] R. van der Hofstad, Random graphs and complex networks, v. 1, Camb. Ser. Stat. Probab. Math., 43, Cambridge Univ. Press, Cambridge, 2017, xvi+321 pp. | DOI | MR | Zbl
[4] R. Hofstad, Random graphs and complex networks, v. 2, Camb. Ser. Stat. Probab. Math., Cambridge Univ. Press, Cambridge (to appear); 2021, xx+510 pp. https://www.win.tue.nl/~rhofstad/
[5] H. Reittu, I. Norros, “On the power-law random graph model of massive data networks”, Performance Evaluation, 55:1-2 (2004), 3–23 | DOI
[6] Yu. L. Pavlov, Random forests, VSP, Utrecht, 2000, 122 pp. | DOI
[7] N. I. Kazimirov, Yu. L. Pavlov, “A remark on Galton–Watson forests”, Discrete Math. Appl., 10:1 (2000), 49–62 | DOI | DOI | MR | Zbl
[8] V. M. Zolotarev, One-dimensional stable distributions, Transl. Math. Monogr., 65, Amer. Math. Soc., Providence, RI, 1986, x+284 pp. | DOI | MR | MR | Zbl | Zbl
[9] Yu. L. Pavlov, “Limit distribution of the number of trees of given size in a random forest”, Discrete Math. Appl., 6:2 (1996), 117–133 | DOI | DOI | MR | Zbl
[10] V. F. Kolchin, Random mappings, Transl. Ser. Math. Engrg., Optimization Software, Inc., Publications Division, New York, 1986, xiv+207 pp. | MR | MR | Zbl | Zbl
[11] W. Feller, An introduction to probability theory and its applications, v. 2, 2nd ed., John Wiley Sons, Inc., New York–London–Sydney, 1971, xxiv+669 pp. | MR | MR | Zbl | Zbl
[12] I. A. Ibragimov, Yu. V. Linnik, Independent and stationary sequences of random variables, Wolters-Noordhoff Publishing, Groningen, 1971, 443 pp. | MR | MR | Zbl | Zbl
[13] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions, Based, in part, on notes left by H. Bateman, v. 2, McGraw-Hill Book Company, Inc., New York–Toronto–London, 1953, xvii+396 pp. | MR | MR | Zbl | Zbl
[14] A. B. Mukhin, “Local limit theorems for lattice random variables”, Theory Probab. Appl., 36:4 (1992), 698–713 | DOI | MR | Zbl