Rigid germs of finite morphisms of smooth surfaces and rational Belyi pairs
Sbornik. Mathematics, Tome 212 (2021) no. 9, pp. 1304-1328 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper “On rigid germs of finite morphisms of smooth surfaces” (Sb. Math., 211:10 (2020), 1354–1381), we defined a map $\beta\colon{\mathcal R\to\mathcal{B}el}$ from the set $\mathcal R$ of equivalence classes of rigid germs of finite morphisms branched in germs of curves having $ADE$ singularity types onto the set $\mathcal{B}el$ of rational Belyi pairs $f\colon\mathbb P^1\,{\to}\,\mathbb P^1$, considered up to the action of $\mathrm{PGL}(2,\mathbb C)$. In this article the inverse images of this map are investigated in terms of monodromies of Belyi pairs. Bibliography: 7 titles.
Keywords: rigid germs of finite covers, Belyi pairs.
@article{SM_2021_212_9_a5,
     author = {Vik. S. Kulikov},
     title = {Rigid germs of finite morphisms of~smooth surfaces and rational {Belyi} pairs},
     journal = {Sbornik. Mathematics},
     pages = {1304--1328},
     year = {2021},
     volume = {212},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_9_a5/}
}
TY  - JOUR
AU  - Vik. S. Kulikov
TI  - Rigid germs of finite morphisms of smooth surfaces and rational Belyi pairs
JO  - Sbornik. Mathematics
PY  - 2021
SP  - 1304
EP  - 1328
VL  - 212
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2021_212_9_a5/
LA  - en
ID  - SM_2021_212_9_a5
ER  - 
%0 Journal Article
%A Vik. S. Kulikov
%T Rigid germs of finite morphisms of smooth surfaces and rational Belyi pairs
%J Sbornik. Mathematics
%D 2021
%P 1304-1328
%V 212
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2021_212_9_a5/
%G en
%F SM_2021_212_9_a5
Vik. S. Kulikov. Rigid germs of finite morphisms of smooth surfaces and rational Belyi pairs. Sbornik. Mathematics, Tome 212 (2021) no. 9, pp. 1304-1328. http://geodesic.mathdoc.fr/item/SM_2021_212_9_a5/

[1] V. I. Arnol'd, “Normal forms for functions near degenerate critical points, the Weyl groups of $A_k$, $D_k$, $E_k$ and Lagrangian singularities”, Funct. Anal. Appl., 6:4 (1972), 254–272 | DOI | MR | Zbl

[2] W. Barth, C. Peters, A. Van de Ven, Compact complex surfaces, Ergeb. Math. Grenzgeb. (3), 4, Springer-Verlag, Berlin, 1984, x+304 pp. | DOI | MR | Zbl

[3] Vik. S. Kulikov, “On germs of finite morphisms of smooth surfaces”, Proc. Steklov Inst. Math., 307 (2019), 85–114 | DOI | DOI | MR | Zbl

[4] Vik. S. Kulikov, “On rigid germs of finite morphisms of smooth surfaces”, Sb. Math., 211:10 (2020), 1354–1381 | DOI | DOI | MR | Zbl

[5] Vik. S. Kulikov, E. I. Shustin, “On $G$-rigid surfaces”, Proc. Steklov Inst. Math., 298 (2017), 133–151 | DOI | DOI | MR | Zbl

[6] D. Mumford, “The topology of normal singularities of an algebraic surface and a criterion for simplicity”, Inst. Hautes Études Sci. Publ. Math., 9 (1961), 5–22 | DOI | MR | Zbl

[7] K. Stein, “Analytische Zerlegungen komplexer Räume”, Math. Ann., 132 (1956), 63–93 | DOI | MR | Zbl