Mots-clés : Hermite-Padé polynomials
@article{SM_2021_212_9_a4,
author = {N. R. Ikonomov and S. P. Suetin},
title = {A {Viskovatov} algorithm for {Hermite-Pad\'e} polynomials},
journal = {Sbornik. Mathematics},
pages = {1279--1303},
year = {2021},
volume = {212},
number = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2021_212_9_a4/}
}
N. R. Ikonomov; S. P. Suetin. A Viskovatov algorithm for Hermite-Padé polynomials. Sbornik. Mathematics, Tome 212 (2021) no. 9, pp. 1279-1303. http://geodesic.mathdoc.fr/item/SM_2021_212_9_a4/
[1] P. Amore, J. P. Boyd, F. M. Fernández, “High order analysis of the limit cycle of the van der Pol oscillator”, J. Math. Phys., 59:1 (2018), 012702, 11 pp. | DOI | MR | Zbl
[2] G. A. Baker, Jr., P. Graves-Morris, Padé approximants, Encyclopedia Math. Appl., 59, 2nd ed., Addison-Wesley Publishing Co., Reading, Mass., 1996, xiv+746 pp. | DOI | MR | MR | Zbl | Zbl
[3] D. Barrios Rolanía, J. S. Geronimo, G. López Lagomasino, “High-order recurrence relations, Hermite–Padé approximation and Nikishin systems”, Sb. Math., 209:3 (2018), 385–420 | DOI | DOI | MR | Zbl
[4] B. Beckermann, G. Labahn, “A uniform approach for Hermite Padé and simultaneous Padé approximants and their matrix-type generalizations”, Numer. Algorithms, 3:1-4 (1992), 45–54 | DOI | MR | Zbl
[5] B. Beckermann, G. Labahn, “Fraction-free computation of matrix rational interpolants and matrix GCDs”, SIAM J. Matrix Anal. Appl., 22:1 (2000), 114–144 | DOI | MR | Zbl
[6] J. Della Dora, C. Di-Crescenzo, “Approximation de Padé–Hermite”, Padé approximation and its applications (Univ. Antwerp, Antwerp, 1979), Lecture Notes in Math., 765, Springer, Berlin–New York, 1979, 88–115 | DOI | MR | Zbl
[7] H. Derksen, An algorithm to compute generalized Padé–Hermite forms, Tech. rep. 9403, Catholic Univ. Nijmegen, 1994
[8] M. Fasondini, N. Hale, R. Spoerer, J. A. C. Weideman, “Quadratic Padé approximation: numerical aspects and applications”, Kompyuternye issledovaniya i modelirovanie, 11:6 (2019), 1017–1031 | DOI
[9] T. M. Feil, H. H. H. Homeier, “Programs for the approximation of real and imaginary single- and multi-valued functions by means of Hermite–Padé-approximants”, Comput. Phys. Comm., 158:2 (2004), 124–135 | DOI | MR | Zbl
[10] A. V. Komlov, N. G. Kruzhilin, R. V. Palvelev, S. P. Suetin, “Convergence of Shafer quadratic approximants”, Russian Math. Surveys, 71:2 (2016), 373–375 | DOI | DOI | MR | Zbl
[11] V. A. Komlov, “Polinomialnaya $m$-sistema Ermita–Pade dlya meromorfnykh funktsii na kompaktnoi rimanovoi poverkhnosti”, Matem. sb., 212:12 (to appear) ; A. Komlov, Polynomial Hermite–Padé $m$-system for meromorphic functions on a compact Riemann surface, 2021, arXiv: 2104.08327
[12] A. López-García, G. López Lagomasino, “Nikishin systems on star-like sets: ratio asymptotics of the associated multiple orthogonal polynomials”, J. Approx. Theory, 225 (2018), 1–40 | DOI | MR | Zbl
[13] V. G. Lysov, “Mixed type Hermite–Padé approximants for a Nikishin system”, Proc. Steklov Inst. Math., 311 (2020), 199–213 | DOI | DOI | MR | Zbl
[14] T. Mano, T. Tsuda, “Hermite–Padé approximation, isomonodromic deformation and hypergeometric integral”, Math. Z., 285:1-2 (2017), 397–431 | DOI | MR | Zbl
[15] E. M. Nikishin, V. N. Sorokin, Rational approximations and orthogonality, Transl. Math. Monogr., 92, Amer. Math. Soc., Providence, RI, 1991, viii+221 pp. | DOI | MR | MR | Zbl | Zbl
[16] V. I. Parusnikov, “The Jacobi–Perron algorithm and simultaneous approximation of functions”, Math. USSR-Sb., 42:2 (1982), 287–296 | DOI | MR | Zbl
[17] H. Rutishauser, Der Quotienten-Differenzen-Algorithmus, Mitt. Inst. Angew. Math. Zürich, 7, Birkhäuser, Basel, 1957, 74 pp. | MR | MR | Zbl | Zbl
[18] T. Sakurai, T. Torii, H. Sugiura, “An iterative method for algebraic equation by Padé approximation”, Computing, 46:2 (1991), 131–141 | DOI | MR | Zbl
[19] Shengfeng Li, Yi Dong, “Viscovatov-like algorithm of Thiele–Newton's blending expansion for a bivariate function”, Mathematics, 7:8 (2019), 696, 15 pp. | DOI
[20] A. V. Sergeev, “A recursive algorithm for Padé–Hermite approximants”, U.S.S.R. Comput. Math. Math. Phys., 26:2 (1986), 17–22 | DOI | MR | Zbl
[21] A. V. Sergeev, D. Z. Goodson, “Summation of asymptotic expansions of multiple-valued functions using algebraic approximants: application to anharmonic oscillators”, J. Phys. A, 31:18 (1998), 4301–4317 | DOI | Zbl
[22] V. N. Sorokin, “Hermite–Padé approximants to the Weyl function and its derivative for discrete measures”, Sb. Math., 211:10 (2020), 1486–1502 | DOI | DOI | MR | Zbl
[23] S. P. Suetin, Hermite–Padé polynomials and analytic continuation: new approach and some results, 2018, arXiv: 1806.08735
[24] S. P. Suetin, “Equivalence of a scalar and a vector equilibrium problem for a pair of functions forming a Nikishin system”, Math. Notes, 106:6 (2019), 970–979 | DOI | DOI | MR | Zbl
[25] S. P. Suetin, “Hermite–Padé polynomials and Shafer quadratic approximations for multivalued analytic functions”, Russian Math. Surveys, 75:4 (2020), 788–790 | DOI | DOI | MR | Zbl
[26] A. Trias, “HELM: The holomorphic embedding load-flow method: foundations and implementations”, Foundations and Trends in Electric Energy Systems, 3:3-4 (2018), 140–370 | DOI
[27] J. van Iseghem, “Vector orthogonal relations. Vector QD-algorithm”, J. Comput. Appl. Math., 19:1 (1987), 141–150 | DOI | MR | Zbl
[28] J. van Iseghem, “Convergence of the vector QD-algorithm. Zeros of vector orthogonal polynomials”, J. Comput. Appl. Math., 25:1 (1989), 33–46 | DOI | MR | Zbl
[29] B. Viscovatoff, “De la méthode générale pour réduire toutes sortes des quantités en fractions continues”, Mém. Acad. Imp. Sci. St. Pťersbourg (5), I (1803–1806) (1809), 226–247
[30] R. Živanovič, “Continuation via quadratic approximation to reconstruct solution branches and locate singularities in the power flow problem”, 24th Mediterranean conference on control and automation (Athens, 2016), IEEE, 2016, 866–870 | DOI