On irregular Sasaki-Einstein metrics in dimension $5$
Sbornik. Mathematics, Tome 212 (2021) no. 9, pp. 1261-1278 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that there are no irregular Sasaki-Einstein structures on rational homology 5-spheres. On the other hand, using $\mathrm{K}$-stability we prove the existence of continuous families of nontoric irregular Sasaki-Einstein structures on odd connected sums of $S^2 \times S^3$. Bibliography: 30 titles.
Keywords: Sasaki-Einstein manifold, cone singularity, normalised volume, $\mathrm{K}$-stability, $T$-variety.
@article{SM_2021_212_9_a3,
     author = {H. S\"u{\ss}},
     title = {On irregular {Sasaki-Einstein} metrics in dimension~$5$},
     journal = {Sbornik. Mathematics},
     pages = {1261--1278},
     year = {2021},
     volume = {212},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_9_a3/}
}
TY  - JOUR
AU  - H. Süß
TI  - On irregular Sasaki-Einstein metrics in dimension $5$
JO  - Sbornik. Mathematics
PY  - 2021
SP  - 1261
EP  - 1278
VL  - 212
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2021_212_9_a3/
LA  - en
ID  - SM_2021_212_9_a3
ER  - 
%0 Journal Article
%A H. Süß
%T On irregular Sasaki-Einstein metrics in dimension $5$
%J Sbornik. Mathematics
%D 2021
%P 1261-1278
%V 212
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2021_212_9_a3/
%G en
%F SM_2021_212_9_a3
H. Süß. On irregular Sasaki-Einstein metrics in dimension $5$. Sbornik. Mathematics, Tome 212 (2021) no. 9, pp. 1261-1278. http://geodesic.mathdoc.fr/item/SM_2021_212_9_a3/

[1] K. Altmann, J. Hausen, “Polyhedral divisors and algebraic torus actions”, Math. Ann., 334:3 (2006), 557–607 | DOI | MR | Zbl

[2] Ch. P. Boyer, K. Galicki, Sasakian geometry, Oxford Math. Monogr., Oxford Univ. Press, Oxford, 2008, xii+613 pp. | MR | Zbl

[3] K. Cho, A. Futaki, H. Ono, “Uniqueness and examples of compact toric Sasaki–Einstein metrics”, Comm. Math. Phys., 277:2 (2008), 439–458 | DOI | MR | Zbl

[4] T. C. Collins, G. Székelyhidi, “K-semistability for irregular Sasakian manifolds”, J. Differential Geom., 109:1 (2018), 81–109 | DOI | MR | Zbl

[5] T. C. Collins, G. Székelyhidi, “Sasaki–Einstein metrics and K-stability”, Geom. Topol., 23:3 (2019), 1339–1413 | DOI | MR | Zbl

[6] H. Flenner, “Divisorenklassengruppen quasihomogener Singularitäten”, J. Reine Angew. Math., 1981:328 (1981), 128–160 | DOI | MR | Zbl

[7] A. Futaki, H. Ono, Guofang Wang, “Transverse Kähler geometry of Sasaki manifolds and toric Sasaki–Einstein manifolds”, J. Differential Geom., 83:3 (2009), 585–636 | DOI | MR | Zbl

[8] J. P. Gauntlett, D. Martelli, J. Sparks, D. Waldram, “A new infinite class of Sasaki–Einstein manifolds”, Adv. Theor. Math. Phys., 8:6 (2004), 987–1000 | DOI | MR | Zbl

[9] J. P. Gauntlett, D. Martelli, J. Sparks, D. Waldram, “Sasaki–Einstein metrics on $S^2\times S^3$”, Adv. Theor. Math. Phys, 8:4 (2004), 711–734 | DOI | MR | Zbl

[10] J. Hausen, E. Herppich, H. Süss, “Multigraded factorial rings and Fano varieties with torus action”, Doc. Math., 16 (2011), 71–109 | MR | Zbl

[11] A. Hanany, P. Kazakopoulos, B. Wecht, “A new infinite class of quiver gauge theories”, J. High Energy Phys., 2005:08 (2005), 054, 30 pp. | DOI | MR

[12] J. Hausen, H. Süß, “The Cox ring of an algebraic variety with torus action”, Adv. Math., 225:2 (2010), 977–1012 | DOI | MR | Zbl

[13] J. Hausen, M. Wrobel, “Non-complete rational $T$-varieties of complexity one”, Math. Nachr., 290:5-6 (2017), 815–826 | DOI | MR | Zbl

[14] N. Ilten, Ch. Manon, “Rational complexity-one $T$-varieties are well-poised”, Int. Math. Res. Not. IMRN, 2019:13 (2019), 4198–4232 | DOI | MR | Zbl

[15] N. Ilten, H. Süß, “K-stability for Fano manifolds with torus action of complexity 1”, Duke Math. J., 166:1 (2017), 177–204 | DOI | MR | Zbl

[16] M.-N. Ishida, “Graded factorial rings of dimension 3 of a restricted type”, J. Math. Kyoto Univ., 17:3 (1977), 441–456 | DOI | MR | Zbl

[17] J. Kollár, “Einstein metrics on five-dimensional Seifert bundles”, J. Geom. Anal., 15:3 (2005), 445–476 | DOI | MR | Zbl

[18] J. Kollár, “Einstein metrics on connected sums of $S^2\times S^3$”, J. Differential Geom., 75:2 (2007), 259–272 | DOI | MR | Zbl

[19] A. Laface, A. Liendo, J. Moraga, Fundamental group of log terminal $\mathbf T$-varieties, arXiv: 1712.02172v2

[20] A. Liendo, H. Süss, “Normal singularities with torus actions”, Tohoku Math. J. (2), 65:1 (2013), 105–130 | DOI | MR | Zbl

[21] Chi Li, Chenyang Xu, “Stability of valuations: higher rational rank”, Peking Math. J., 1:1 (2018), 1–79 ; arXiv: 1707.05561 | DOI | MR | Zbl

[22] Sh. Mori, “Graded factorial domains”, Japan. J. Math. (N.S.), 3:2 (1977), 223–238 | DOI | MR | Zbl

[23] D. Martelli, J. Sparks, “Toric Sasaki–Einstein metrics on $S^2\times S^3$”, Phys. Lett. B, 621:1-2 (2005), 208–212 | DOI | MR | Zbl

[24] D. Martelli, J. Sparks, Shing-Tung Yau, “The geometric dual of $a$-maximisation for toric Sasaki–Einstein manifolds”, Comm. Math. Phys., 268:1 (2006), 39–65 | DOI | MR | Zbl

[25] D. Martelli, J. Sparks, Shing-Tung Yau, “Sasaki–Einstein manifolds and volume minimisation”, Comm. Math. Phys., 280:3 (2008), 611–673 | DOI | MR | Zbl

[26] T. Oota, Yu. Yasui, “New example of infinite family of quiver gauge theories”, Nuclear Phys. B, 762:3 (2007), 377–391 | DOI | MR | Zbl

[27] L. Petersen, H. Süss, “Torus invariant divisors”, Israel J. Math., 182 (2011), 481–504 | DOI | MR | Zbl

[28] J. Sparks, “New results in Sasaki–Einstein geometry”, Riemannian topology and geometric structures on manifolds, Proceedings of the conference in honor of Ch. P. Boyer's 65th birthday (Albuquerque, NM, 2006), Progr. Math., 271, Birkhäuser Boston, Boston, MA, 2009, 161–184 | DOI | MR | Zbl

[29] J. Sparks, “Sasaki–Einstein manifolds”, Geometry of special holonomy and related topics, Surv. Differ. Geom., 16, Int. Press, Somerville, MA, 2011, 265–324 | DOI | MR | Zbl

[30] O. van Koert, “Contact homology of Brieskorn manifolds”, Forum Math., 20:2 (2008), 317–339 | DOI | MR | Zbl