On irregular Sasaki-Einstein metrics in dimension~$5$
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 212 (2021) no. 9, pp. 1261-1278
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We show that there are no irregular Sasaki-Einstein structures on rational homology 5-spheres. On the other hand, using $\mathrm{K}$-stability we prove the existence of continuous families of nontoric irregular Sasaki-Einstein structures on odd connected sums of $S^2 \times S^3$.
Bibliography: 30 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Sasaki-Einstein manifold, cone singularity, normalised volume, $\mathrm{K}$-stability, $T$-variety.
                    
                    
                    
                  
                
                
                @article{SM_2021_212_9_a3,
     author = {H. S\"u{\ss}},
     title = {On irregular {Sasaki-Einstein} metrics in dimension~$5$},
     journal = {Sbornik. Mathematics},
     pages = {1261--1278},
     publisher = {mathdoc},
     volume = {212},
     number = {9},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_9_a3/}
}
                      
                      
                    H. Süß. On irregular Sasaki-Einstein metrics in dimension~$5$. Sbornik. Mathematics, Tome 212 (2021) no. 9, pp. 1261-1278. http://geodesic.mathdoc.fr/item/SM_2021_212_9_a3/
