On irregular Sasaki-Einstein metrics in dimension~$5$
Sbornik. Mathematics, Tome 212 (2021) no. 9, pp. 1261-1278

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that there are no irregular Sasaki-Einstein structures on rational homology 5-spheres. On the other hand, using $\mathrm{K}$-stability we prove the existence of continuous families of nontoric irregular Sasaki-Einstein structures on odd connected sums of $S^2 \times S^3$. Bibliography: 30 titles.
Keywords: Sasaki-Einstein manifold, cone singularity, normalised volume, $\mathrm{K}$-stability, $T$-variety.
@article{SM_2021_212_9_a3,
     author = {H. S\"u{\ss}},
     title = {On irregular {Sasaki-Einstein} metrics in dimension~$5$},
     journal = {Sbornik. Mathematics},
     pages = {1261--1278},
     publisher = {mathdoc},
     volume = {212},
     number = {9},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_9_a3/}
}
TY  - JOUR
AU  - H. Süß
TI  - On irregular Sasaki-Einstein metrics in dimension~$5$
JO  - Sbornik. Mathematics
PY  - 2021
SP  - 1261
EP  - 1278
VL  - 212
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2021_212_9_a3/
LA  - en
ID  - SM_2021_212_9_a3
ER  - 
%0 Journal Article
%A H. Süß
%T On irregular Sasaki-Einstein metrics in dimension~$5$
%J Sbornik. Mathematics
%D 2021
%P 1261-1278
%V 212
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2021_212_9_a3/
%G en
%F SM_2021_212_9_a3
H. Süß. On irregular Sasaki-Einstein metrics in dimension~$5$. Sbornik. Mathematics, Tome 212 (2021) no. 9, pp. 1261-1278. http://geodesic.mathdoc.fr/item/SM_2021_212_9_a3/