Two game-theoretic problems of approach
Sbornik. Mathematics, Tome 212 (2021) no. 9, pp. 1228-1260

Voir la notice de l'article provenant de la source Math-Net.Ru

A nonlinear conflict control system in a finite-dimensional Euclidean space on a finite time interval is considered. Two interrelated game-theoretic problems of making a system approach a compact set at a fixed moment of time are studied. A method for constructing approximate solutions to game problems of approach is presented. Most attention is paid to problems related to constructing approximations of the solvability sets of game problems in the phase space. Bibliography: 35 titles.
Keywords: control system, target set, game-theoretic problem of approach, differential inclusion, solvability set.
@article{SM_2021_212_9_a2,
     author = {A. A. Ershov and A. V. Ushakov and V. N. Ushakov},
     title = {Two game-theoretic problems of approach},
     journal = {Sbornik. Mathematics},
     pages = {1228--1260},
     publisher = {mathdoc},
     volume = {212},
     number = {9},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_9_a2/}
}
TY  - JOUR
AU  - A. A. Ershov
AU  - A. V. Ushakov
AU  - V. N. Ushakov
TI  - Two game-theoretic problems of approach
JO  - Sbornik. Mathematics
PY  - 2021
SP  - 1228
EP  - 1260
VL  - 212
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2021_212_9_a2/
LA  - en
ID  - SM_2021_212_9_a2
ER  - 
%0 Journal Article
%A A. A. Ershov
%A A. V. Ushakov
%A V. N. Ushakov
%T Two game-theoretic problems of approach
%J Sbornik. Mathematics
%D 2021
%P 1228-1260
%V 212
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2021_212_9_a2/
%G en
%F SM_2021_212_9_a2
A. A. Ershov; A. V. Ushakov; V. N. Ushakov. Two game-theoretic problems of approach. Sbornik. Mathematics, Tome 212 (2021) no. 9, pp. 1228-1260. http://geodesic.mathdoc.fr/item/SM_2021_212_9_a2/