An eigenfunction manifold generated by a family of periodic boundary value problems
Sbornik. Mathematics, Tome 212 (2021) no. 9, pp. 1208-1227 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An analytic and topological description is given of the manifold of periodic eigenfunctions generated by the space of one-dimensional stationary Schrödinger equations with periodic real potentials. Connections with results due to Neuman, Ince and Uhlenbeck are discussed. Bibliography: 11 titles.
Keywords: space of periodic boundary-value problems, fibration of the eigenfunction manifold.
@article{SM_2021_212_9_a1,
     author = {Ya. M. Dymarskii and A. A. Bondar'},
     title = {An eigenfunction manifold generated by a~family of periodic boundary value problems},
     journal = {Sbornik. Mathematics},
     pages = {1208--1227},
     year = {2021},
     volume = {212},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_9_a1/}
}
TY  - JOUR
AU  - Ya. M. Dymarskii
AU  - A. A. Bondar'
TI  - An eigenfunction manifold generated by a family of periodic boundary value problems
JO  - Sbornik. Mathematics
PY  - 2021
SP  - 1208
EP  - 1227
VL  - 212
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2021_212_9_a1/
LA  - en
ID  - SM_2021_212_9_a1
ER  - 
%0 Journal Article
%A Ya. M. Dymarskii
%A A. A. Bondar'
%T An eigenfunction manifold generated by a family of periodic boundary value problems
%J Sbornik. Mathematics
%D 2021
%P 1208-1227
%V 212
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2021_212_9_a1/
%G en
%F SM_2021_212_9_a1
Ya. M. Dymarskii; A. A. Bondar'. An eigenfunction manifold generated by a family of periodic boundary value problems. Sbornik. Mathematics, Tome 212 (2021) no. 9, pp. 1208-1227. http://geodesic.mathdoc.fr/item/SM_2021_212_9_a1/

[1] Ya. M. Dymarskii, Yu. A. Evtushenko, “Foliation of the space of periodic boundary-value problems by hypersurfaces corresponding to fixed lengths of the $n$th spectral lacuna”, Sb. Math., 207:5 (2016), 678–701 | DOI | DOI | MR | Zbl

[2] F. Neuman, “Linear differential equations of the second order and their applications”, Rend. Mat. (6), 4 (1971), 559–617 | MR | Zbl

[3] E. L. Ince, “Periodic solutions of a linear differential equation of the second order with periodic coefficients”, Proc. Cambridge Philos. Soc., 23:1 (1927), 44–46 | DOI | Zbl

[4] K. Uhlenbeck, “Generic properties of eigenfunctions”, Amer. J. Math., 98:4 (1976), 1059–1078 | DOI | MR | Zbl

[5] B. M. Levitan, I. S. Sargsjan, Introduction to spectral theory: selfadjoint ordinary differential operators, Transl. Math. Monogr., 39, Amer. Math. Soc., Providence, RI, 1975, xi+525 pp. | MR | MR | Zbl | Zbl

[6] J.-P. Bourguignon, “Sturm–Liouville equations all of whose solutions are periodic, after F. Neuman”: A. L. Besse, Manifolds all of whose geodesics are closed, Ergeb. Math. Grenzgeb., 93, Springer-Verlag, Berlin–New York, 1978, 225–230 | DOI | MR | MR | Zbl

[7] J. Harris, Algebraic geometry. A first course, Grad. Texts in Math., 133, Springer-Verlag, New York, 1992, xx+328 pp. | DOI | MR | Zbl

[8] Ya. M. Dymarskii, “Manifold method in the eigenvector theory of nonlinear operators”, J. Math. Sci. (N.Y.), 154:5 (2008), 655–815 | DOI | MR | Zbl

[9] L. D. Landau, E. M. Lifshitz, Course of theoretical physics, v. 3, Addison-Wesley Series in Advanced Physics, Quantum mechanics: non-relativistic theory, Pergamon Press Ltd., London–Paris; Addison-Wesley Publishing Co., Inc., Reading, MA, 1958, xii+515 pp. | MR | MR | Zbl | Zbl

[10] V. I. Arnold, Mathematical methods of classical mechanics, Grad. Texts in Math., 60, Springer-Verlag, New York–Heidelberg, 1978, xvi+462 pp. | DOI | MR | MR | Zbl | Zbl

[11] N. I. Akhiezer, “Nekotorye obratnye zadachi spektralnogo analiza, svyazannye s giperellipticheskimi integralami”, Prilozhenie v kn.: N. I. Akhiezer, I. M. Glazman, Teoriya lineinykh operatorov v gilbertovom prostranstve, v. 2, 3-e izd., ispr. i dop., Vischa shkola, Kharkov, 1978, 242–283 | MR