Complete sets of polynomials in bi-involution on nilpotent seven-dimensional Lie algebras
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 212 (2021) no. 9, pp. 1193-1207
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper, we construct complete sets of polynomials in bi-involution on nilpotent Lie algebras of dimension 7 in the list due to Gong. Thus we verify the generalized Mishchenko-Fomenko conjecture for all algebras in this list.
Bibliography: 14 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
integrable Hamiltonian systems, complete commutative sets of polynomials, argument shift method.
Mots-clés : Lie algebras
                    
                  
                
                
                Mots-clés : Lie algebras
@article{SM_2021_212_9_a0,
     author = {K. S. Vorushilov},
     title = {Complete sets of polynomials in bi-involution on nilpotent seven-dimensional {Lie} algebras},
     journal = {Sbornik. Mathematics},
     pages = {1193--1207},
     publisher = {mathdoc},
     volume = {212},
     number = {9},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_9_a0/}
}
                      
                      
                    TY - JOUR AU - K. S. Vorushilov TI - Complete sets of polynomials in bi-involution on nilpotent seven-dimensional Lie algebras JO - Sbornik. Mathematics PY - 2021 SP - 1193 EP - 1207 VL - 212 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2021_212_9_a0/ LA - en ID - SM_2021_212_9_a0 ER -
K. S. Vorushilov. Complete sets of polynomials in bi-involution on nilpotent seven-dimensional Lie algebras. Sbornik. Mathematics, Tome 212 (2021) no. 9, pp. 1193-1207. http://geodesic.mathdoc.fr/item/SM_2021_212_9_a0/
