Complete sets of polynomials in bi-involution on nilpotent seven-dimensional Lie algebras
Sbornik. Mathematics, Tome 212 (2021) no. 9, pp. 1193-1207

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we construct complete sets of polynomials in bi-involution on nilpotent Lie algebras of dimension 7 in the list due to Gong. Thus we verify the generalized Mishchenko-Fomenko conjecture for all algebras in this list. Bibliography: 14 titles.
Keywords: integrable Hamiltonian systems, complete commutative sets of polynomials, argument shift method.
Mots-clés : Lie algebras
@article{SM_2021_212_9_a0,
     author = {K. S. Vorushilov},
     title = {Complete sets of polynomials in bi-involution on nilpotent seven-dimensional {Lie} algebras},
     journal = {Sbornik. Mathematics},
     pages = {1193--1207},
     publisher = {mathdoc},
     volume = {212},
     number = {9},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_9_a0/}
}
TY  - JOUR
AU  - K. S. Vorushilov
TI  - Complete sets of polynomials in bi-involution on nilpotent seven-dimensional Lie algebras
JO  - Sbornik. Mathematics
PY  - 2021
SP  - 1193
EP  - 1207
VL  - 212
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2021_212_9_a0/
LA  - en
ID  - SM_2021_212_9_a0
ER  - 
%0 Journal Article
%A K. S. Vorushilov
%T Complete sets of polynomials in bi-involution on nilpotent seven-dimensional Lie algebras
%J Sbornik. Mathematics
%D 2021
%P 1193-1207
%V 212
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2021_212_9_a0/
%G en
%F SM_2021_212_9_a0
K. S. Vorushilov. Complete sets of polynomials in bi-involution on nilpotent seven-dimensional Lie algebras. Sbornik. Mathematics, Tome 212 (2021) no. 9, pp. 1193-1207. http://geodesic.mathdoc.fr/item/SM_2021_212_9_a0/