Complete sets of polynomials in bi-involution on nilpotent seven-dimensional Lie algebras
Sbornik. Mathematics, Tome 212 (2021) no. 9, pp. 1193-1207 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we construct complete sets of polynomials in bi-involution on nilpotent Lie algebras of dimension 7 in the list due to Gong. Thus we verify the generalized Mishchenko-Fomenko conjecture for all algebras in this list. Bibliography: 14 titles.
Keywords: integrable Hamiltonian systems, complete commutative sets of polynomials, argument shift method.
Mots-clés : Lie algebras
@article{SM_2021_212_9_a0,
     author = {K. S. Vorushilov},
     title = {Complete sets of polynomials in bi-involution on nilpotent seven-dimensional {Lie} algebras},
     journal = {Sbornik. Mathematics},
     pages = {1193--1207},
     year = {2021},
     volume = {212},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_9_a0/}
}
TY  - JOUR
AU  - K. S. Vorushilov
TI  - Complete sets of polynomials in bi-involution on nilpotent seven-dimensional Lie algebras
JO  - Sbornik. Mathematics
PY  - 2021
SP  - 1193
EP  - 1207
VL  - 212
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2021_212_9_a0/
LA  - en
ID  - SM_2021_212_9_a0
ER  - 
%0 Journal Article
%A K. S. Vorushilov
%T Complete sets of polynomials in bi-involution on nilpotent seven-dimensional Lie algebras
%J Sbornik. Mathematics
%D 2021
%P 1193-1207
%V 212
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2021_212_9_a0/
%G en
%F SM_2021_212_9_a0
K. S. Vorushilov. Complete sets of polynomials in bi-involution on nilpotent seven-dimensional Lie algebras. Sbornik. Mathematics, Tome 212 (2021) no. 9, pp. 1193-1207. http://geodesic.mathdoc.fr/item/SM_2021_212_9_a0/

[1] A. V. Bolsinov, P. Zhang, “Jordan–Kronecker invariants of finite-dimensional Lie algebras”, Transform. Groups, 21:1 (2016), 51–86 | DOI | MR | Zbl

[2] A. V. Bolsinov, “Complete commutative subalgebras in polynomial Poisson algebras: a proof of the Mischenko–Fomenko conjecture”, Theor. Appl. Mech., 43:2 (2016), 145–168 | DOI | Zbl

[3] A. V. Bolsinov, A. M. Izosimov, A. Yu. Konyaev, A. A. Oshemkov, “Algebra i topologiya integriruemykh sistem. Zadachi dlya issledovaniya”, Trudy seminara po vektornomu i tenzornomu analizu, 28, Izd-vo Mosk. un-ta, M., 2012, 119–191

[4] A. V. Bolsinov, A. M. Izosimov, D. M. Tsonev, “Finite-dimensional integrable systems: a collection of research problems”, J. Geom. Phys., 115 (2017), 2–15 | DOI | MR | Zbl

[5] A. A. Garazha, “A canonical basis of a pair of compatible Poisson brackets on a matrix algebra”, Sb. Math., 211:6 (2020), 838–849 | DOI | DOI | MR | Zbl

[6] Ming-Peng Gong, Classification of nilpotent Lie algebras of dimension 7 (over algebraically closed field and $\mathbf R$), Ph.D. thesis, Univ. of Waterloo, Waterloo, Ontario, Canada, 1998, viii+165 pp. http://hdl.handle.net/10012/1148

[7] A. Yu. Groznova, Vychislenie invariantov Zhordana–Kronekera dlya algebr Li malykh razmernostei, Vypusknaya kvalifikatsionnaya rabota, MGU, M., 2018

[8] A. Yu. Konyaev, “Completeness of commutative Sokolov–Odesskii subalgebras and Nijenhuis operators on $\operatorname{gl}(n)$”, Sb. Math., 211:4 (2020), 583–593 | DOI | DOI | MR | Zbl

[9] A. A. Korotkevich, “Integrable Hamiltonian systems on low-dimensional Lie algebras”, Sb. Math., 200:12 (2009), 1731–1766 | DOI | DOI | MR | Zbl

[10] A. S. Miščenko, A. T. Fomenko, “Euler equations on finite-dimensional Lie groups”, Math. USSR-Izv., 12:2 (1978), 371–389 | DOI | MR | Zbl

[11] A. S. Mishchenko, A. T. Fomenko, “Integrability of Euler equations on semisimple Lie algebras”, Selecta Math. Soviet., 2 (1982), 207–291 | MR | Zbl

[12] A. S. Mishchenko, A. T. Fomenko, “Generalized Liouville method of integration of Hamiltonian systems”, Funct. Anal. Appl., 12:2 (1978), 113–121 | DOI | MR | Zbl

[13] R. C. Thompson, “Pencils of complex and real symmetric and skew matrices”, Linear Algebra Appl., 147 (1991), 323–371 | DOI | MR | Zbl

[14] A. T. Fomenko, “On symplectic structures and integrable systems on symmetric spaces”, Math. USSR-Sb., 43:2 (1982), 235–250 | DOI | MR | Zbl