Mots-clés : Korobov cubature formulae, dispersion.
@article{SM_2021_212_8_a3,
author = {A. S. Rubtsova and K. S. Ryutin and V. N. Temlyakov},
title = {On the fixed volume discrepancy of the {Korobov} point sets},
journal = {Sbornik. Mathematics},
pages = {1180--1192},
year = {2021},
volume = {212},
number = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2021_212_8_a3/}
}
A. S. Rubtsova; K. S. Ryutin; V. N. Temlyakov. On the fixed volume discrepancy of the Korobov point sets. Sbornik. Mathematics, Tome 212 (2021) no. 8, pp. 1180-1192. http://geodesic.mathdoc.fr/item/SM_2021_212_8_a3/
[1] V. N. Temlyakov, M. Ullrich, “On the fixed volume discrepancy of the Fibonacci sets in the integral norms”, J. Complexity, 61 (2020), 101472, 8 pp. | DOI | MR | Zbl
[2] J. Beck, W. W. L. Chen, Irregularities of distribution, Cambridge Tracts in Math., 89, Cambridge Univ. Press, Cambridge, 1987, xiv+294 pp. | DOI | MR | Zbl
[3] J. Matoušek, Geometric discrepancy. An illustrated guide, Algorithms Combin., 18, Springer-Verlag, Berlin, 1999, xii+288 pp. | DOI | MR | Zbl
[4] E. Novak, H. Woźniakowski, Tractability of multivariate problems, v. II, EMS Tracts Math., 12, Standard information for functionals, Eur. Math. Soc., Zürich, 2010, xviii+657 pp. | DOI | MR | Zbl
[5] V. Temlyakov, Multivariate approximation, Cambridge Monogr. Appl. Comput. Math., 32, Cambridge Univ. Press, Cambridge, 2018, xvi+534 pp. | DOI | MR | Zbl
[6] D. Bilyk, “Roth's orthogonal function method in discrepancy theory and some new connections”, A panorama of discrepancy theory, Lecture Notes in Math., 2107, Springer, Cham, 2014, 71–158 | DOI | MR | Zbl
[7] Dinh Dũng, V. Temlyakov, T. Ullrich, Hyperbolic cross approximation, Adv. Courses Math. CRM Barcelona, Birkhäuser/Springer, Cham, 2018, xi+218 pp. ; arXiv: 1601.03978v2 | DOI | MR | Zbl
[8] V. N. Temlyakov, “Cubature formulas, discrepancy, and nonlinear approximation”, J. Complexity, 19:3 (2003), 352–391 | DOI | MR | Zbl
[9] V. Temlyakov, “Connections between numerical integration, discrepancy, dispersion, and universal discretization”, SMAI J. Comput. Math., S5 (2019), 185–209 ; arXiv: 1812.04489v1 | DOI | MR | Zbl
[10] V. N. Temlyakov, “Smooth fixed volume discrepancy, dispersion, and related problems”, J. Approx. Theory, 237 (2019), 113–134 | DOI | MR | Zbl
[11] C. Aistleitner, A. Hinrichs, D. Rudolf, “On the size of the largest empty box amidst a point set”, Discrete Appl. Math., 230 (2017), 146–150 | DOI | MR | Zbl
[12] S. Breneis, A. Hinrichs, Fibonacci lattices have minimal dispersion on the two-dimensional torus, arXiv: 1905.03856v1
[13] A. Dumitrescu, Minghui Jiang, “On the largest empty axis-parallel box amidst $n$ points”, Algorithmica, 66:2 (2013), 225–248 | DOI | MR | Zbl
[14] G. Rote, R. F. Tichy, “Quasi-Monte-Carlo methods and the dispersion of point sequences”, Math. Comput. Modelling, 23:8-9 (1996), 9–23 | DOI | MR | Zbl
[15] D. Rudolf, “An upper bound of the minimal dispersion via delta covers”, Contemporary computational mathematics – a celebration of the 80th birthday of Ian Sloan, Springer, Cham, 2018, 1099–1108 | DOI | MR | Zbl
[16] J. Sosnovec, “A note on minimal dispersion of point sets in the unit cube”, European J. Combin., 69 (2018), 255–259 | DOI | MR | Zbl
[17] M. Ullrich, “A lower bound for the dispersion on the torus”, Math. Comput. Simulation, 143 (2018), 186–190 | DOI | MR | Zbl
[18] M. Ullrich, “A note on the dispersion of admissible lattices”, Discrete Appl. Math., 257 (2019), 385–387 | DOI | MR | Zbl
[19] M. Ullrich, J. Vybíral, “An upper bound on the minimal dispersion”, J. Complexity, 45 (2018), 120–126 | DOI | MR | Zbl
[20] V. N. Temlyakov, Approximation of periodic functions, Comput. Math. Anal. Ser., Nova Sci. Publ., Commack, NY, 1993, x+419 pp. | MR | Zbl
[21] V. N. Temlyakov, “Fixed volume discrepancy in the periodic case”, Topics in classical and modern analysis (Savannah, GA, 2017), Appl. Numer. Harmon. Anal., Birkhäuser/Springer, Cham, 2019, 315–330 ; arXiv: 1710.11499v1 | DOI
[22] H. Niederreiter, Chaoping Xing, “Low-discrepancy sequences and global function fields with many rational places”, Finite Fields Appl., 2:3 (1996), 241–273 | DOI | MR | Zbl
[23] V. A. Bykovskii, “The discrepancy of the Korobov lattice points”, Izv. Math., 76:3 (2012), 446–465 | DOI | DOI | MR | Zbl