On the fixed volume discrepancy of the Korobov point sets
Sbornik. Mathematics, Tome 212 (2021) no. 8, pp. 1180-1192 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is devoted to the study of a discrepancy-type characteristic – the fixed volume discrepancy – of Korobov point sets in the unit cube. It has been observed recently that this new characteristic allows us to obtain an optimal rate of dispersion decay. This observation has motivated us to study this new version of discrepancy thoroughly; it also seems to have independent interest. This paper extends recent results due to Temlyakov and Ullrich on the fixed volume discrepancy of Fibonacci point sets. Bibliography: 23 titles.
Keywords: discrepancy
Mots-clés : Korobov cubature formulae, dispersion.
@article{SM_2021_212_8_a3,
     author = {A. S. Rubtsova and K. S. Ryutin and V. N. Temlyakov},
     title = {On the fixed volume discrepancy of the {Korobov} point sets},
     journal = {Sbornik. Mathematics},
     pages = {1180--1192},
     year = {2021},
     volume = {212},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_8_a3/}
}
TY  - JOUR
AU  - A. S. Rubtsova
AU  - K. S. Ryutin
AU  - V. N. Temlyakov
TI  - On the fixed volume discrepancy of the Korobov point sets
JO  - Sbornik. Mathematics
PY  - 2021
SP  - 1180
EP  - 1192
VL  - 212
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2021_212_8_a3/
LA  - en
ID  - SM_2021_212_8_a3
ER  - 
%0 Journal Article
%A A. S. Rubtsova
%A K. S. Ryutin
%A V. N. Temlyakov
%T On the fixed volume discrepancy of the Korobov point sets
%J Sbornik. Mathematics
%D 2021
%P 1180-1192
%V 212
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2021_212_8_a3/
%G en
%F SM_2021_212_8_a3
A. S. Rubtsova; K. S. Ryutin; V. N. Temlyakov. On the fixed volume discrepancy of the Korobov point sets. Sbornik. Mathematics, Tome 212 (2021) no. 8, pp. 1180-1192. http://geodesic.mathdoc.fr/item/SM_2021_212_8_a3/

[1] V. N. Temlyakov, M. Ullrich, “On the fixed volume discrepancy of the Fibonacci sets in the integral norms”, J. Complexity, 61 (2020), 101472, 8 pp. | DOI | MR | Zbl

[2] J. Beck, W. W. L. Chen, Irregularities of distribution, Cambridge Tracts in Math., 89, Cambridge Univ. Press, Cambridge, 1987, xiv+294 pp. | DOI | MR | Zbl

[3] J. Matoušek, Geometric discrepancy. An illustrated guide, Algorithms Combin., 18, Springer-Verlag, Berlin, 1999, xii+288 pp. | DOI | MR | Zbl

[4] E. Novak, H. Woźniakowski, Tractability of multivariate problems, v. II, EMS Tracts Math., 12, Standard information for functionals, Eur. Math. Soc., Zürich, 2010, xviii+657 pp. | DOI | MR | Zbl

[5] V. Temlyakov, Multivariate approximation, Cambridge Monogr. Appl. Comput. Math., 32, Cambridge Univ. Press, Cambridge, 2018, xvi+534 pp. | DOI | MR | Zbl

[6] D. Bilyk, “Roth's orthogonal function method in discrepancy theory and some new connections”, A panorama of discrepancy theory, Lecture Notes in Math., 2107, Springer, Cham, 2014, 71–158 | DOI | MR | Zbl

[7] Dinh Dũng, V. Temlyakov, T. Ullrich, Hyperbolic cross approximation, Adv. Courses Math. CRM Barcelona, Birkhäuser/Springer, Cham, 2018, xi+218 pp. ; arXiv: 1601.03978v2 | DOI | MR | Zbl

[8] V. N. Temlyakov, “Cubature formulas, discrepancy, and nonlinear approximation”, J. Complexity, 19:3 (2003), 352–391 | DOI | MR | Zbl

[9] V. Temlyakov, “Connections between numerical integration, discrepancy, dispersion, and universal discretization”, SMAI J. Comput. Math., S5 (2019), 185–209 ; arXiv: 1812.04489v1 | DOI | MR | Zbl

[10] V. N. Temlyakov, “Smooth fixed volume discrepancy, dispersion, and related problems”, J. Approx. Theory, 237 (2019), 113–134 | DOI | MR | Zbl

[11] C. Aistleitner, A. Hinrichs, D. Rudolf, “On the size of the largest empty box amidst a point set”, Discrete Appl. Math., 230 (2017), 146–150 | DOI | MR | Zbl

[12] S. Breneis, A. Hinrichs, Fibonacci lattices have minimal dispersion on the two-dimensional torus, arXiv: 1905.03856v1

[13] A. Dumitrescu, Minghui Jiang, “On the largest empty axis-parallel box amidst $n$ points”, Algorithmica, 66:2 (2013), 225–248 | DOI | MR | Zbl

[14] G. Rote, R. F. Tichy, “Quasi-Monte-Carlo methods and the dispersion of point sequences”, Math. Comput. Modelling, 23:8-9 (1996), 9–23 | DOI | MR | Zbl

[15] D. Rudolf, “An upper bound of the minimal dispersion via delta covers”, Contemporary computational mathematics – a celebration of the 80th birthday of Ian Sloan, Springer, Cham, 2018, 1099–1108 | DOI | MR | Zbl

[16] J. Sosnovec, “A note on minimal dispersion of point sets in the unit cube”, European J. Combin., 69 (2018), 255–259 | DOI | MR | Zbl

[17] M. Ullrich, “A lower bound for the dispersion on the torus”, Math. Comput. Simulation, 143 (2018), 186–190 | DOI | MR | Zbl

[18] M. Ullrich, “A note on the dispersion of admissible lattices”, Discrete Appl. Math., 257 (2019), 385–387 | DOI | MR | Zbl

[19] M. Ullrich, J. Vybíral, “An upper bound on the minimal dispersion”, J. Complexity, 45 (2018), 120–126 | DOI | MR | Zbl

[20] V. N. Temlyakov, Approximation of periodic functions, Comput. Math. Anal. Ser., Nova Sci. Publ., Commack, NY, 1993, x+419 pp. | MR | Zbl

[21] V. N. Temlyakov, “Fixed volume discrepancy in the periodic case”, Topics in classical and modern analysis (Savannah, GA, 2017), Appl. Numer. Harmon. Anal., Birkhäuser/Springer, Cham, 2019, 315–330 ; arXiv: 1710.11499v1 | DOI

[22] H. Niederreiter, Chaoping Xing, “Low-discrepancy sequences and global function fields with many rational places”, Finite Fields Appl., 2:3 (1996), 241–273 | DOI | MR | Zbl

[23] V. A. Bykovskii, “The discrepancy of the Korobov lattice points”, Izv. Math., 76:3 (2012), 446–465 | DOI | DOI | MR | Zbl