Mots-clés : Liouville equivalence, Fomenko-Zieschang invariant.
@article{SM_2021_212_8_a2,
author = {V. V. Vedyushkina and I. S. Kharcheva},
title = {Billiard books realize all bases of {Liouville} foliations of integrable {Hamiltonian} systems},
journal = {Sbornik. Mathematics},
pages = {1122--1179},
year = {2021},
volume = {212},
number = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2021_212_8_a2/}
}
TY - JOUR AU - V. V. Vedyushkina AU - I. S. Kharcheva TI - Billiard books realize all bases of Liouville foliations of integrable Hamiltonian systems JO - Sbornik. Mathematics PY - 2021 SP - 1122 EP - 1179 VL - 212 IS - 8 UR - http://geodesic.mathdoc.fr/item/SM_2021_212_8_a2/ LA - en ID - SM_2021_212_8_a2 ER -
V. V. Vedyushkina; I. S. Kharcheva. Billiard books realize all bases of Liouville foliations of integrable Hamiltonian systems. Sbornik. Mathematics, Tome 212 (2021) no. 8, pp. 1122-1179. http://geodesic.mathdoc.fr/item/SM_2021_212_8_a2/
[1] V. V. Kozlov, D. V. Treshchev, Billiards. A genetic introduction to the dynamics of systems with impacts, Transl. Math. Monogr., 89, Amer. Math. Soc., Providence, RI, 1991, viii+171 pp. | DOI | MR | MR | Zbl | Zbl
[2] V. V. Fokicheva, “Description of singularities for billiard systems bounded by confocal ellipses or hyperbolas”, Moscow Univ. Math. Bull., 69:4 (2014), 148–158 | DOI | MR | Zbl
[3] I. S. Kharcheva, “Isoenergetic manifolds of integrable billiard books”, Moscow Univ. Math. Bull., 75:4 (2020), 149–160 | DOI | MR | Zbl
[4] V. V. Vedyushkina (Fokicheva), A. T. Fomenko, “Integrable topological billiards and equivalent dynamical systems”, Izv. Math., 81:4 (2017), 688–733 | DOI | DOI | MR | Zbl
[5] V. V. Vedyushkina (Fokicheva), A. T. Fomenko, “Integrable geodesic flows on orientable two-dimensional surfaces and topological billiards”, Izv. Math., 83:6 (2019), 1137–1173 | DOI | DOI | MR | Zbl
[6] A. T. Fomenko, “The symplectic topology of completely integrable Hamiltonian systems”, Russian Math. Surveys, 44:1 (1989), 181–219 | DOI | MR | Zbl
[7] A. T. Fomenko, “Morse theory of integrable Hamiltonian systems”, Soviet Math. Dokl., 33:2 (1986), 502–506 | MR | Zbl
[8] A. V. Bolsinov, A. T. Fomenko, Integrable Hamiltonian systems. Geometry, topology, classification, Chapman Hall/CRC, Boca Raton, FL, 2004, xvi+730 pp. | DOI | MR | MR | Zbl | Zbl
[9] A. T. Fomenko, H. Zieschang, “A topological invariant and a criterion for the equivalence of integrable Hamiltonian systems with two degrees of freedom”, Math. USSR-Izv., 36:3 (1991), 567–596 | DOI | MR | Zbl
[10] V. I. Dragović, M. Radnović, “Pseudo-integrable billiards and double reflection nets”, Russian Math. Surveys, 70:1 (2015), 1–31 | DOI | DOI | MR | Zbl
[11] V. A. Moskvin, “Topology of Liouville bundles of integrable billiards in non-convex domains”, Moscow Univ. Math. Bull., 73:3 (2018), 103–110 | DOI | MR | Zbl
[12] V. V. Fokicheva, “A topological classification of billiards in locally planar domains bounded by arcs of confocal quadrics”, Sb. Math., 206:10 (2015), 1463–1507 | DOI | DOI | MR | Zbl
[13] A. T. Fomenko, V. V. Vedyushkina, “Topological billiards, conservation laws and classification of trajectories”, Functional analysis and geometry: Selim Grigorievich Krein centennial, Contemp. Math., 733, Amer. Math. Soc., Providence, RI, 2019, 129–148 | DOI | MR | Zbl
[14] V. V. Vedyushkina, I. S. Kharcheva, “Billiard books model all three-dimensional bifurcations of integrable Hamiltonian systems”, Sb. Math., 209:12 (2018), 1690–1727 | DOI | DOI | MR | Zbl
[15] V. V. Vedyushkina, A. T. Fomenko, I. S. Kharcheva, “Modeling nondegenerate bifurcations of closures of solutions for integrable systems with two degrees of freedom by integrable topological billiards”, Dokl. Math., 97:2 (2018), 174–176 | DOI | DOI | MR | Zbl