Simple closed geodesics on regular tetrahedra in spherical space
Sbornik. Mathematics, Tome 212 (2021) no. 8, pp. 1040-1067 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove that there are finitely many simple closed geodesics on regular tetrahedra in spherical space. Also, for any pair of coprime positive integers $(p,q)$, we find constants $\alpha_1$ and $\alpha_2$ depending on $p$ and $q$ and satisfying the inequality $\pi/3<\alpha_1<\alpha_2<2\pi/3$, such that a regular spherical tetrahedron with planar angle $\alpha\in(\pi/3, \alpha_1)$ has a unique simple closed geodesic of type $(p,q)$, up to tetrahedron isometry, whilst a regular spherical tetrahedron with planar angle $\alpha\in(\alpha_2, 2\pi/3)$ has no such geodesic. Bibliography: 19 titles.
Keywords: closed geodesics, regular tetrahedron, spherical space.
@article{SM_2021_212_8_a0,
     author = {A. A. Borisenko and D. D. Sukhorebska},
     title = {Simple closed geodesics on regular tetrahedra in spherical space},
     journal = {Sbornik. Mathematics},
     pages = {1040--1067},
     year = {2021},
     volume = {212},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_8_a0/}
}
TY  - JOUR
AU  - A. A. Borisenko
AU  - D. D. Sukhorebska
TI  - Simple closed geodesics on regular tetrahedra in spherical space
JO  - Sbornik. Mathematics
PY  - 2021
SP  - 1040
EP  - 1067
VL  - 212
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2021_212_8_a0/
LA  - en
ID  - SM_2021_212_8_a0
ER  - 
%0 Journal Article
%A A. A. Borisenko
%A D. D. Sukhorebska
%T Simple closed geodesics on regular tetrahedra in spherical space
%J Sbornik. Mathematics
%D 2021
%P 1040-1067
%V 212
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2021_212_8_a0/
%G en
%F SM_2021_212_8_a0
A. A. Borisenko; D. D. Sukhorebska. Simple closed geodesics on regular tetrahedra in spherical space. Sbornik. Mathematics, Tome 212 (2021) no. 8, pp. 1040-1067. http://geodesic.mathdoc.fr/item/SM_2021_212_8_a0/

[1] L. Lusternik, L. Schnirelmann, “Sur le problème de troix géodésique fermees sur les surfaces de genre 0”, C. R. Acad. Sci. Paris, 189 (1929), 269–271 | Zbl

[2] J. Hadamard, “Les surfaces à courbures opposées et leurs lignes géodésiques”, J. Math. Pures Appl. (5), 4 (1898), 27–73 | Zbl

[3] H. Huber, “Zur analytischen Theorie hyperbolischer Raumformen und Bewegungsgruppen”, Math. Ann., 138 (1959), 1–26 | DOI | MR | Zbl

[4] H. Huber, “Zur analytischen Theorie hyperbolischer Raumformen und Bewegungsgruppen. II”, Math. Ann., 143 (1961), 463–464 | DOI | MR | Zbl

[5] I. Rivin, “Simple curves on surfaces”, Geom. Dedicata, 87:1-3 (2001), 345–360 | DOI | MR | Zbl

[6] M. Mirzakhani, “Growth of the number of simple closed geodesics on hyperbolic surfaces”, Ann. of Math. (2), 168:1 (2008), 97–125 | DOI | MR | Zbl

[7] S. E. Kon-Fossen, Nekotorye voprosy differentsialnoi geometrii v tselom, Fizmatgiz, M., 1959, 303 pp. | MR | Zbl

[8] A. D. Alexandrov, Convex polyhedra, Springer Monogr. Math., Springer-Verlag, Berlin, 2005, xii+539 pp. | DOI | MR | MR | Zbl | Zbl

[9] A. V. Pogorelov, Extrinsic geometry of convex surfaces, Transl. Math. Monogr., 35, Amer. Math. Soc., Providence, RI, 1973, vi+669 pp. | DOI | MR | MR | Zbl | Zbl

[10] A. V. Pogorelov, “Odna teorema o geodezicheskikh na zamknutoi vypukloi poverkhnosti”, Matem. sb., 18(60):1 (1946), 181–183 | MR | Zbl

[11] V. A. Toponogov, “Otsenka dliny vypukloi krivoi na dvumernoi poverkhnosti”, Sib. matem. zhurn., 4:5 (1963), 1189–1193 | MR | Zbl

[12] V. A. Vaigant, O. Yu. Matukevich, “Estimation of the length of a simple geodesic on a convex surface”, Siberian Math. J., 42:5 (2001), 833–845 | DOI | MR | Zbl

[13] A. Cotton, D. Freeman, A. Gnepp, Ting Ng, J. Spivack, C. Yoder, “The isoperimetric problem on some singular surfaces”, J. Aust. Math. Soc., 78:2 (2005), 167–197 | DOI | MR | Zbl

[14] K. A. Lawson, J. L. Parish, C. M. Traub, A. G. Weyhaupt, “Coloring graphs to classify simple closed geodesics on convex deltahedra”, Int. J. Pure Appl. Math., 89:2 (2013), 123–139 | DOI | Zbl

[15] D. Fuchs, E. Fuchs, “Closed geodesics on regular polyhedra”, Mosc. Math. J., 7:2 (2007), 265–279 | DOI | MR | Zbl

[16] D. B. Fuchs, Geodesics on a regular dodecahedron, Preprint No. 91, Max Planck Inst. Math., Bonn, 2009, 14 pp. http://webdoc.sub.gwdg.de/ebook/serien/e/mpi_mathematik/2010/2009_91.pdf

[17] V. Yu. Protasov, “Closed geodesics on the surface of a simplex”, Sb. Math., 198:2 (2007), 243–260 | DOI | DOI | MR | Zbl

[18] A. A. Borisenko, D. D. Sukhorebska, “Simple closed geodesics on regular tetrahedra in Lobachevsky space”, Sb. Math., 211:5 (2020), 617–642 | DOI | DOI | MR | Zbl

[19] A. A. Borisenko, “An estimation of the length of a convex curve in two-dimensional Aleksandrov spaces”, Zhurn. matem. fiz., anal., geom., 16:3 (2020), 221–227 | DOI | MR