@article{SM_2021_212_8_a0,
author = {A. A. Borisenko and D. D. Sukhorebska},
title = {Simple closed geodesics on regular tetrahedra in spherical space},
journal = {Sbornik. Mathematics},
pages = {1040--1067},
year = {2021},
volume = {212},
number = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2021_212_8_a0/}
}
A. A. Borisenko; D. D. Sukhorebska. Simple closed geodesics on regular tetrahedra in spherical space. Sbornik. Mathematics, Tome 212 (2021) no. 8, pp. 1040-1067. http://geodesic.mathdoc.fr/item/SM_2021_212_8_a0/
[1] L. Lusternik, L. Schnirelmann, “Sur le problème de troix géodésique fermees sur les surfaces de genre 0”, C. R. Acad. Sci. Paris, 189 (1929), 269–271 | Zbl
[2] J. Hadamard, “Les surfaces à courbures opposées et leurs lignes géodésiques”, J. Math. Pures Appl. (5), 4 (1898), 27–73 | Zbl
[3] H. Huber, “Zur analytischen Theorie hyperbolischer Raumformen und Bewegungsgruppen”, Math. Ann., 138 (1959), 1–26 | DOI | MR | Zbl
[4] H. Huber, “Zur analytischen Theorie hyperbolischer Raumformen und Bewegungsgruppen. II”, Math. Ann., 143 (1961), 463–464 | DOI | MR | Zbl
[5] I. Rivin, “Simple curves on surfaces”, Geom. Dedicata, 87:1-3 (2001), 345–360 | DOI | MR | Zbl
[6] M. Mirzakhani, “Growth of the number of simple closed geodesics on hyperbolic surfaces”, Ann. of Math. (2), 168:1 (2008), 97–125 | DOI | MR | Zbl
[7] S. E. Kon-Fossen, Nekotorye voprosy differentsialnoi geometrii v tselom, Fizmatgiz, M., 1959, 303 pp. | MR | Zbl
[8] A. D. Alexandrov, Convex polyhedra, Springer Monogr. Math., Springer-Verlag, Berlin, 2005, xii+539 pp. | DOI | MR | MR | Zbl | Zbl
[9] A. V. Pogorelov, Extrinsic geometry of convex surfaces, Transl. Math. Monogr., 35, Amer. Math. Soc., Providence, RI, 1973, vi+669 pp. | DOI | MR | MR | Zbl | Zbl
[10] A. V. Pogorelov, “Odna teorema o geodezicheskikh na zamknutoi vypukloi poverkhnosti”, Matem. sb., 18(60):1 (1946), 181–183 | MR | Zbl
[11] V. A. Toponogov, “Otsenka dliny vypukloi krivoi na dvumernoi poverkhnosti”, Sib. matem. zhurn., 4:5 (1963), 1189–1193 | MR | Zbl
[12] V. A. Vaigant, O. Yu. Matukevich, “Estimation of the length of a simple geodesic on a convex surface”, Siberian Math. J., 42:5 (2001), 833–845 | DOI | MR | Zbl
[13] A. Cotton, D. Freeman, A. Gnepp, Ting Ng, J. Spivack, C. Yoder, “The isoperimetric problem on some singular surfaces”, J. Aust. Math. Soc., 78:2 (2005), 167–197 | DOI | MR | Zbl
[14] K. A. Lawson, J. L. Parish, C. M. Traub, A. G. Weyhaupt, “Coloring graphs to classify simple closed geodesics on convex deltahedra”, Int. J. Pure Appl. Math., 89:2 (2013), 123–139 | DOI | Zbl
[15] D. Fuchs, E. Fuchs, “Closed geodesics on regular polyhedra”, Mosc. Math. J., 7:2 (2007), 265–279 | DOI | MR | Zbl
[16] D. B. Fuchs, Geodesics on a regular dodecahedron, Preprint No. 91, Max Planck Inst. Math., Bonn, 2009, 14 pp. http://webdoc.sub.gwdg.de/ebook/serien/e/mpi_mathematik/2010/2009_91.pdf
[17] V. Yu. Protasov, “Closed geodesics on the surface of a simplex”, Sb. Math., 198:2 (2007), 243–260 | DOI | DOI | MR | Zbl
[18] A. A. Borisenko, D. D. Sukhorebska, “Simple closed geodesics on regular tetrahedra in Lobachevsky space”, Sb. Math., 211:5 (2020), 617–642 | DOI | DOI | MR | Zbl
[19] A. A. Borisenko, “An estimation of the length of a convex curve in two-dimensional Aleksandrov spaces”, Zhurn. matem. fiz., anal., geom., 16:3 (2020), 221–227 | DOI | MR