Integrated solutions of non-densely defined semilinear integro-differential inclusions: existence, topology and applications
Sbornik. Mathematics, Tome 212 (2021) no. 7, pp. 1001-1039 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Given a linear closed but not necessarily densely defined operator $A$ on a Banach space $E$ with nonempty resolvent set and a multivalued map $F\colon I\times E\multimap E$ with weakly sequentially closed graph, we consider the integro-differential inclusion $$ \dot{u}\in Au+F\biggl(t,\int u\biggr)\quad\text{on } I,\qquad u(0)=x_0. $$ We focus on the case when $A$ generates an integrated semigroup and obtain existence of integrated solutions if $E$ is weakly compactly generated and $F$ satisfies $$ \beta(F(t,\Omega))\leqslant \eta(t)\beta(\Omega) \quad\text{for all bounded } \Omega\subset E, $$ where $\eta\in L^1(I)$ and $\beta$ denotes the De Blasi measure of noncompactness. When $E$ is separable, we are able to show that the set of all integrated solutions is a compact $R_\delta$-subset of the space $C(I,E)$ endowed with the weak topology. We use this result to investigate a nonlocal Cauchy problem described by means of a nonconvex-valued boundary condition operator. We also include some applications to partial differential equations with multivalued terms are. Bibliography: 26 titles.
Keywords: convergence theorem, De Blasi measure of noncompactness, integrated semigroup, integrated solution, $R_\delta$-set, semilinear integro-differential inclusion.
@article{SM_2021_212_7_a3,
     author = {R. Pietkun},
     title = {Integrated solutions of non-densely defined semilinear integro-differential inclusions: existence, topology and applications},
     journal = {Sbornik. Mathematics},
     pages = {1001--1039},
     year = {2021},
     volume = {212},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_7_a3/}
}
TY  - JOUR
AU  - R. Pietkun
TI  - Integrated solutions of non-densely defined semilinear integro-differential inclusions: existence, topology and applications
JO  - Sbornik. Mathematics
PY  - 2021
SP  - 1001
EP  - 1039
VL  - 212
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2021_212_7_a3/
LA  - en
ID  - SM_2021_212_7_a3
ER  - 
%0 Journal Article
%A R. Pietkun
%T Integrated solutions of non-densely defined semilinear integro-differential inclusions: existence, topology and applications
%J Sbornik. Mathematics
%D 2021
%P 1001-1039
%V 212
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2021_212_7_a3/
%G en
%F SM_2021_212_7_a3
R. Pietkun. Integrated solutions of non-densely defined semilinear integro-differential inclusions: existence, topology and applications. Sbornik. Mathematics, Tome 212 (2021) no. 7, pp. 1001-1039. http://geodesic.mathdoc.fr/item/SM_2021_212_7_a3/

[1] W. Arendt, “Vector valued Laplace transforms and Cauchy problems”, Israel J. Math., 59:3 (1987), 327–352 | DOI | MR | Zbl

[2] J.-P. Aubin, A. Cellina, Differential inclusions. Set-valued maps and viability theory, Grundlehren Math. Wiss., 264, Springer-Verlag, Berlin, 1984, xiii+342 pp. | DOI | MR | Zbl

[3] J.-P. Aubin, H. Frankowska, Set-valued analysis, Systems Control Found. Appl., 2, Birkhäuser Boston, Inc., Boston, MA, 1990, xx+461 pp. | DOI | MR | Zbl

[4] I. Benedetti, M. Väth, “Semilinear inclusions with nonlocal conditions without compactness in non-reflexive spaces”, Topol. Methods Nonlinear Anal., 48:2 (2016), 613–636 | DOI | MR | Zbl

[5] G. Da Prato, E. Sinestrari, “Differential operators with non dense domain”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 14:2 (1987), 285–344 | MR | Zbl

[6] F. S. De Blasi, “On a property of the unit sphere in a Banach space”, Bull. Math. Soc. Sci. Math. Roumanie (N.S.), 21(69):3-4 (1977), 259–262 | MR | Zbl

[7] M. Fabian, P. Habala, P. Hájek, V. Montesinos, V. Zizler, Banach space theory. The basis for linear and nonlinear analysis, CMS Books Math./Ouvrages Math. SMC, Springer, New York, 2011, xiv+820 pp. | DOI | MR | Zbl

[8] G. Fournier, L. Górniewicz, “The Lefschetz fixed point theorem for multi-valued maps of non-metrizable spaces”, Fund. Math., 92:3 (1976), 213–222 | DOI | MR | Zbl

[9] L. Gasiński, N. S. Papageorgiou, Nonlinear analysis, Ser. Math. Anal. Appl., 9, Chapman Hall/CRC, Boca Raton, FL, 2006, xii+971 pp. | DOI | MR | Zbl

[10] L. Górniewicz, Topological fixed point theory of multivalued mappings, Topol. Fixed Point Theory Appl., 4, 2nd ed., Springer, Dordrecht, 2006, xiv+539 pp. | DOI | MR | Zbl

[11] C. Himmelberg, “Measurable relations”, Fund. Math., 87 (1975), 53–72 | DOI | MR | Zbl

[12] Shouchuan Hu, N. S. Papageorgiou, Handbook of multivalued analysis, v. I, Math. Appl., 419, Theory, Kluwer Acad. Publ., Dordrecht, 1997, xvi+964 pp. | MR | Zbl

[13] M. Kamenskii, V. Obukhovskii, P. Zecca, Condensing multivalued maps and semilinear differential inclusions in Banach spaces, De Gruyter Ser. Nonlinear Anal. Appl., 7, Walter de Gruyter Co., Berlin, 2001, xii+231 pp. | DOI | MR | Zbl

[14] H. Kellerman, M. Hieber, “Integrated semigroups”, J. Funct. Anal., 84:1 (1989), 160–180 | DOI | MR | Zbl

[15] I. Kubiaczyk, S. Szufla, “Kneser's theorem for weak solutions of ordinary differential equations in Banach spaces”, Publ. Inst. Math. (Beograd) (N.S.), 32(46) (1982), 99–103 | MR | Zbl

[16] M. Kunze, G. Schlüchtermann, “Strongly generated Banach spaces and measures of noncompactness”, Math. Nachr., 191 (1998), 197–214 | DOI | MR | Zbl

[17] F. M. Neubrander, “Integrated semigroups and their applications to the abstract Cauchy problem”, Pacific J. Math., 135:1 (1988), 111–155 | DOI | MR | Zbl

[18] V. Obukhovskii, P. Zecca, “On semilinear differential inclusions in Banach spaces with nondensely defined operators”, J. Fixed Point Theory Appl., 9:1 (2011), 85–100 | DOI | MR | Zbl

[19] D. O'Regan, R. Precup, “Fixed point theorems for set-valued maps and existence principles for integral inclusions”, J. Math. Anal. Appl., 245:2 (2000), 594–612 | DOI | MR | Zbl

[20] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Appl. Math. Sci., 44, Springer-Verlag, New York, 1983, viii+279 pp. | DOI | MR | Zbl

[21] R. Pietkun, “Structure of the solution set to Volterra integral inclusions and applications”, J. Math. Anal. Appl., 403:2 (2013), 643–666 | DOI | MR | Zbl

[22] E. H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York–Toronto, ON–London, 1966, xiv+528 pp. | MR | MR | Zbl | Zbl

[23] H. R. Thieme, ““Integrated semigroups” and integrated solutions to abstract Cauchy problems”, J. Math. Anal. Appl., 152:2 (1990), 416–447 | DOI | MR | Zbl

[24] A. Ülger, “Weak compactness in $L^1(\mu,X)$”, Proc. Amer. Math. Soc., 113:1 (1991), 143–149 | DOI | MR | Zbl

[25] I. I. Vrabie, $C_0$-semigroups and applications, North-Holland Math. Stud., 191, North-Holland Publishing Co., Amsterdam, 2003, xii+373 pp. | MR | Zbl

[26] J. Weidmann, Linear operators in Hilbert spaces, Grad. Texts in Math., 68, Springer-Verlag, New York–Berlin, 1980, xiii+402 pp. | DOI | MR | Zbl