Integrated solutions of non-densely defined semilinear integro-differential inclusions: existence, topology and applications
Sbornik. Mathematics, Tome 212 (2021) no. 7, pp. 1001-1039
Voir la notice de l'article provenant de la source Math-Net.Ru
Given a linear closed but not necessarily densely defined operator $A$ on a Banach space $E$ with nonempty resolvent set and a multivalued map $F\colon I\times E\multimap E$ with weakly sequentially closed graph, we consider the integro-differential inclusion
$$
\dot{u}\in Au+F\biggl(t,\int u\biggr)\quad\text{on } I,\qquad u(0)=x_0.
$$
We focus on the case when $A$ generates an integrated semigroup and obtain existence of integrated solutions if $E$ is weakly compactly generated and $F$ satisfies
$$
\beta(F(t,\Omega))\leqslant \eta(t)\beta(\Omega) \quad\text{for all bounded } \Omega\subset E,
$$
where $\eta\in L^1(I)$ and $\beta$ denotes the De Blasi measure of noncompactness. When $E$ is separable, we are able to show that the set of all integrated solutions is a compact $R_\delta$-subset of the space $C(I,E)$ endowed with the weak topology. We use this result to investigate a nonlocal Cauchy problem described by means of a nonconvex-valued boundary condition operator. We also include some applications to partial differential equations with multivalued terms are.
Bibliography: 26 titles.
Keywords:
convergence theorem, De Blasi measure of noncompactness, integrated semigroup, integrated solution, $R_\delta$-set, semilinear integro-differential inclusion.
@article{SM_2021_212_7_a3,
author = {R. Pietkun},
title = {Integrated solutions of non-densely defined semilinear integro-differential inclusions: existence, topology and applications},
journal = {Sbornik. Mathematics},
pages = {1001--1039},
publisher = {mathdoc},
volume = {212},
number = {7},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2021_212_7_a3/}
}
TY - JOUR AU - R. Pietkun TI - Integrated solutions of non-densely defined semilinear integro-differential inclusions: existence, topology and applications JO - Sbornik. Mathematics PY - 2021 SP - 1001 EP - 1039 VL - 212 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2021_212_7_a3/ LA - en ID - SM_2021_212_7_a3 ER -
%0 Journal Article %A R. Pietkun %T Integrated solutions of non-densely defined semilinear integro-differential inclusions: existence, topology and applications %J Sbornik. Mathematics %D 2021 %P 1001-1039 %V 212 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_2021_212_7_a3/ %G en %F SM_2021_212_7_a3
R. Pietkun. Integrated solutions of non-densely defined semilinear integro-differential inclusions: existence, topology and applications. Sbornik. Mathematics, Tome 212 (2021) no. 7, pp. 1001-1039. http://geodesic.mathdoc.fr/item/SM_2021_212_7_a3/