Integrated solutions of non-densely defined semilinear integro-differential inclusions: existence, topology and applications
Sbornik. Mathematics, Tome 212 (2021) no. 7, pp. 1001-1039

Voir la notice de l'article provenant de la source Math-Net.Ru

Given a linear closed but not necessarily densely defined operator $A$ on a Banach space $E$ with nonempty resolvent set and a multivalued map $F\colon I\times E\multimap E$ with weakly sequentially closed graph, we consider the integro-differential inclusion $$ \dot{u}\in Au+F\biggl(t,\int u\biggr)\quad\text{on } I,\qquad u(0)=x_0. $$ We focus on the case when $A$ generates an integrated semigroup and obtain existence of integrated solutions if $E$ is weakly compactly generated and $F$ satisfies $$ \beta(F(t,\Omega))\leqslant \eta(t)\beta(\Omega) \quad\text{for all bounded } \Omega\subset E, $$ where $\eta\in L^1(I)$ and $\beta$ denotes the De Blasi measure of noncompactness. When $E$ is separable, we are able to show that the set of all integrated solutions is a compact $R_\delta$-subset of the space $C(I,E)$ endowed with the weak topology. We use this result to investigate a nonlocal Cauchy problem described by means of a nonconvex-valued boundary condition operator. We also include some applications to partial differential equations with multivalued terms are. Bibliography: 26 titles.
Keywords: convergence theorem, De Blasi measure of noncompactness, integrated semigroup, integrated solution, $R_\delta$-set, semilinear integro-differential inclusion.
@article{SM_2021_212_7_a3,
     author = {R. Pietkun},
     title = {Integrated solutions of non-densely defined semilinear integro-differential inclusions: existence, topology and applications},
     journal = {Sbornik. Mathematics},
     pages = {1001--1039},
     publisher = {mathdoc},
     volume = {212},
     number = {7},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_7_a3/}
}
TY  - JOUR
AU  - R. Pietkun
TI  - Integrated solutions of non-densely defined semilinear integro-differential inclusions: existence, topology and applications
JO  - Sbornik. Mathematics
PY  - 2021
SP  - 1001
EP  - 1039
VL  - 212
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2021_212_7_a3/
LA  - en
ID  - SM_2021_212_7_a3
ER  - 
%0 Journal Article
%A R. Pietkun
%T Integrated solutions of non-densely defined semilinear integro-differential inclusions: existence, topology and applications
%J Sbornik. Mathematics
%D 2021
%P 1001-1039
%V 212
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2021_212_7_a3/
%G en
%F SM_2021_212_7_a3
R. Pietkun. Integrated solutions of non-densely defined semilinear integro-differential inclusions: existence, topology and applications. Sbornik. Mathematics, Tome 212 (2021) no. 7, pp. 1001-1039. http://geodesic.mathdoc.fr/item/SM_2021_212_7_a3/