The preservation of threshold resonances and the splitting off of eigenvalues from the threshold of the continuous spectrum of quantum waveguides
Sbornik. Mathematics, Tome 212 (2021) no. 7, pp. 965-1000

Voir la notice de l'article provenant de la source Math-Net.Ru

Threshold resonance arises on the lower bound of the continuous spectrum of a quantum waveguide (the Dirichlet problem for the Laplace operator), provided that for this value of the spectral parameter a nontrivial bounded solution exists which is either a trapped wave decaying at infinity or an almost standing wave stabilizing at infinity. In many problems in asymptotic analysis, it is important to be able to distinguish which of the waves initiates the threshold resonance; in this work we discuss several ways to clarify its properties. In addition, we demonstrate how the threshold resonance can be preserved by fine tuning the profile of the waveguide wall, and we obtain asymptotic expressions for the near-threshold eigenvalues appearing in the discrete or continuous spectrum when the threshold resonance is destroyed. Bibliography: 60 titles.
Keywords: quantum waveguide, threshold resonance, trapped wave, almost standing wave, boundary perturbation, asymptotics, eigenvalue.
@article{SM_2021_212_7_a2,
     author = {S. A. Nazarov},
     title = {The preservation of threshold resonances and the splitting off of eigenvalues from the threshold of the continuous spectrum of quantum waveguides},
     journal = {Sbornik. Mathematics},
     pages = {965--1000},
     publisher = {mathdoc},
     volume = {212},
     number = {7},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_7_a2/}
}
TY  - JOUR
AU  - S. A. Nazarov
TI  - The preservation of threshold resonances and the splitting off of eigenvalues from the threshold of the continuous spectrum of quantum waveguides
JO  - Sbornik. Mathematics
PY  - 2021
SP  - 965
EP  - 1000
VL  - 212
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2021_212_7_a2/
LA  - en
ID  - SM_2021_212_7_a2
ER  - 
%0 Journal Article
%A S. A. Nazarov
%T The preservation of threshold resonances and the splitting off of eigenvalues from the threshold of the continuous spectrum of quantum waveguides
%J Sbornik. Mathematics
%D 2021
%P 965-1000
%V 212
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2021_212_7_a2/
%G en
%F SM_2021_212_7_a2
S. A. Nazarov. The preservation of threshold resonances and the splitting off of eigenvalues from the threshold of the continuous spectrum of quantum waveguides. Sbornik. Mathematics, Tome 212 (2021) no. 7, pp. 965-1000. http://geodesic.mathdoc.fr/item/SM_2021_212_7_a2/