@article{SM_2021_212_7_a2,
author = {S. A. Nazarov},
title = {The preservation of threshold resonances and the splitting off of eigenvalues from the threshold of the continuous spectrum of quantum waveguides},
journal = {Sbornik. Mathematics},
pages = {965--1000},
year = {2021},
volume = {212},
number = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2021_212_7_a2/}
}
TY - JOUR AU - S. A. Nazarov TI - The preservation of threshold resonances and the splitting off of eigenvalues from the threshold of the continuous spectrum of quantum waveguides JO - Sbornik. Mathematics PY - 2021 SP - 965 EP - 1000 VL - 212 IS - 7 UR - http://geodesic.mathdoc.fr/item/SM_2021_212_7_a2/ LA - en ID - SM_2021_212_7_a2 ER -
%0 Journal Article %A S. A. Nazarov %T The preservation of threshold resonances and the splitting off of eigenvalues from the threshold of the continuous spectrum of quantum waveguides %J Sbornik. Mathematics %D 2021 %P 965-1000 %V 212 %N 7 %U http://geodesic.mathdoc.fr/item/SM_2021_212_7_a2/ %G en %F SM_2021_212_7_a2
S. A. Nazarov. The preservation of threshold resonances and the splitting off of eigenvalues from the threshold of the continuous spectrum of quantum waveguides. Sbornik. Mathematics, Tome 212 (2021) no. 7, pp. 965-1000. http://geodesic.mathdoc.fr/item/SM_2021_212_7_a2/
[1] S. Molchanov, B. Vainberg, “Scattering solutions in networks of thin fibers: small diameter asymptotics”, Comm. Math. Phys., 273:2 (2007), 533–559 | DOI | MR | Zbl
[2] P. Exner, H. Kovar̆ík, Quantum waveguides, Theoret. Math. Phys., 22, Springer, Cham, 2015, xxii+382 pp. | DOI | MR | Zbl
[3] D. Grieser, “Spectra of graph neighborhoods and scattering”, Proc. Lond. Math. Soc. (3), 97:3 (2008), 718–752 | DOI | MR | Zbl
[4] S. A. Nazarov, “Transmission conditions in one-dimensional model of a rectangular lattice of thin quantum waveguides.”, J. Math. Sci. (N.Y.), 219:6 (2016), 994–1015 | DOI | MR | Zbl
[5] S. A. Nazarov, K. Ruotsalainen, P. Uusitalo, “Multifarious transmission conditions in the graph models of carbon nano-structures”, Mater. Phys. Mech., 29:2 (2016), 107–115
[6] S. A. Nazarov, “Almost standing waves in a periodic waveguide with resonator, and near-threshold eigenvalues”, St. Petersburg Math. J., 28:3 (2017), 377–410 | DOI | MR | Zbl
[7] N. A. Umov, Uravneniya dvizheniya energii v telakh, Tip. Ulrikha i Shultse, Odessa, 1874, 58 pp.
[8] L. I. Mandelshtam, Lektsii po optike teorii otnositelnosti i kvantovoi mekhanike, Nauka, M., 1972, 438 pp. | MR
[9] I. I. Vorovich, V. A. Babeshko, Dinamicheskie smeshannye zadachi teorii uprugosti dlya neklassicheskikh oblastei, Nauka, M., 1979, 320 pp. | MR | Zbl
[10] S. A. Nazarov, B. A. Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries, De Gruyter Exp. Math., 13, Walter de Gruyter Co., Berlin, 1994, viii+525 pp. | DOI | MR | Zbl
[11] J. H. Poynting, “On the transfer of energy in the electromagnetic field”, Philos. Trans. R. Soc. Lond., 175 (1884), 343–361 | DOI | Zbl
[12] S. A. Nazarov, “Gaps and eigenfrequencies in the spectrum of a periodic acoustic waveguide”, Acoust. Phys., 59:3 (2013), 272–280 | DOI | DOI
[13] S. A. Nazarov, “Threshold resonances and virtual levels in the spectrum of cylindrical and periodic waveguides”, Izv. Math., 84:6 (2020), 1105–1160 | DOI | DOI | MR | Zbl
[14] S. A. Nazarov, “Asymptotic expansions of eigenvalues in the continuous spectrum of a regularly perturbed quantum waveguide”, Theoret. and Math. Phys., 167:2 (2011), 606–627 | DOI | DOI | MR | Zbl
[15] K. Pankrashkin, “Eigenvalue inequalities and absence of threshold resonances for waveguide junctions”, J. Math. Anal. Appl., 449:1 (2017), 907–925 | DOI | MR | Zbl
[16] F. L. Bakharev, S. A. Nazarov, “Kriterii otsutstviya i nalichiya ogranichennykh reshenii na poroge nepreryvnogo spektra v ob'edinenii kvantovykh volnovodov”, Algebra i analiz, 32:6 (2020), 1–23 | MR
[17] S. A. Nazarov, “A criterion for the existence of decaying solutions in the problem on a resonator with a cylindrical waveguide”, Funct. Anal. Appl., 40:2 (2006), 97–107 | DOI | DOI | MR | Zbl
[18] S. A. Nazarov, “Bounded solutions in a $\mathrm{T}$-shaped waveguide and the spectral properties of the Dirichlet ladder”, Comput. Math. Math. Phys., 54:8 (2014), 1261–1279 | DOI | DOI | MR | Zbl
[19] S. A. Nazarov, “The spectra of rectangular lattices of quantum waveguides”, Izv. Math., 81:1 (2017), 29–90 | DOI | DOI | MR | Zbl
[20] S. A. Nazarov, “Variational and asymptotic methods for finding eigenvalues below the continuous spectrum threshold”, Siberian Math. J., 51:5 (2010), 866–878 | DOI | MR | Zbl
[21] B. Simon, “On the absorption of eigenvalues by continuous spectrum in regular perturbation problems”, J. Functional Analys, 25:4 (1977), 338–344 | DOI | MR | Zbl
[22] B. Simon, “The bound state of weakly coupled Schrödinger operators in one and two dimensions”, Ann. Physics, 97:2 (1976), 279–288 | DOI | MR | Zbl
[23] S. A. Nazarov, “Estimating the convergence rate for eigenfrequencies of anisotropic plates with variable thickness”, C. R. Mecanique, 330:9 (2002), 603–607 | DOI | Zbl
[24] S. A. Nazarov, “Uniform estimates of remainders in asymptotic expansions of solutions to the problem on eigenoscillations of a piezoelectric plate”, J. Math. Sci. (N.Y.), 114:5 (2003), 1657–1725 | DOI | MR | Zbl
[25] W. Bulla, F. Gesztesy, W. Renger, B. Simon, “Weakly coupled bound states in quantum waveguides”, Proc. Amer. Math. Soc., 125:5 (1997), 1487–1495 | DOI | MR | Zbl
[26] M. Sh. Birman, M. Z. Solomyak, Spectral theory of self-adjoint operators in Hilbert space, Math. Appl. (Soviet Ser.), 5, D. Reidel Publishing Co., Dordrecht, 1987, xv+301 pp. | MR | MR | Zbl
[27] D. V. Evans, M. Levitin, D. Vassiliev, “Existence theorems for trapped modes”, J. Fluid Mech., 261 (1994), 21–31 | DOI | MR | Zbl
[28] D. S. Jones, “The eigenvalues of $\nabla^2u+\lambda u=0$ when the boundary conditions are given on semi-infinite domains”, Proc. Cambridge Philos. Soc., 49:4 (1953), 668–684 | DOI | MR | Zbl
[29] I. V. Kamotskii, S. A. Nazarov, “Wood's anomalies and surface waves in the problem of scattering by a periodic boundary. II”, Sb. Math., 190:2 (1999), 205–231 | DOI | DOI | MR | Zbl
[30] S. A. Nazarov, “Enforced stability of a simple eigenvalue in the continuous spectrum of a waveguide”, Funct. Anal. Appl., 47:3 (2013), 195–209 | DOI | DOI | MR | Zbl
[31] M. I. Višik, L. A. Lyusternik, “Regular degeneration and boundary layer for linear differential equations with small parameter”, Amer. Math. Soc. Transl. Ser. 2, 20, Amer. Math. Soc., Providence, RI, 1962, 239–364 | DOI | MR | MR | Zbl | Zbl
[32] S. A. Nazarov, “Infinite Kirchhoff plate on a compact elastic foundation may have an arbitrarily small eigenvalue”, Dokl. Math., 100:2 (2019), 491–495 | DOI | DOI | Zbl
[33] S. A. Nazarov, “Waves trapped by semi-infinite Kirchhoff plate at ultra-low frequencies”, Mech. Solids, 55:8 (2020), 1328–1339 | DOI | DOI | Zbl
[34] S. A. Nazarov, “Constructing a trapped mode at low frequencies in an elastic waveguide”, Funct. Anal. Appl., 54:1 (2020), 31–44 | DOI | DOI | MR | Zbl
[35] S. A. Nazarov, K. M. Ruotsalainen, “Criteria for trapped modes in a cranked channel with fixed and freely floating bodies”, Z. Angew. Math. Phys., 65:5 (2014), 977–1002 | DOI | MR | Zbl
[36] A.-S. Bonnet-Ben Dhia, S. A. Nazarov, “Obstacles in acoustic waveguides becoming “invisible” at given frequencies”, Acoust. Phys., 59:6 (2013), 633–639 | DOI | DOI
[37] L. Bers, F. John, M. Schechter, Partial differential equations, With special lectures by L. Garding and A. N. Milgram (Boulder, Colorado, 1957), Lectures in Appl. Math., III, Interscience Publishers John Wiley Sons, Inc., New York–London–Sydney, 1964, xiii+343 pp. | MR | MR | Zbl | Zbl
[38] A. I. Korolkov, S. A. Nazarov, A. V. Shanin, “Stabilizing solutions at thresholds of the continuous spectrum and anomalous transmission of waves”, Z. Angew. Math. Mech., 96:10 (2016), 1245–1260 | DOI | MR
[39] A. N. Kolmogorov, S. V. Fomin, Elements of the theory of functions and functional analysis, v. I, II, Graylock Press, Albany, NY, 1957, 1961, ix+129 pp., ix+128 pp. | MR | MR | MR | Zbl | Zbl
[40] P. Duclos, P. Exner, “Curvature-induced bound states in quantum waveguides in two and three dimensions”, Rev. Math. Phys., 7:1 (1995), 73–102 | DOI | MR | Zbl
[41] P. Exner, S. A. Vugalter, “Bound states in a locally deformed waveguide: the critical case”, Lett. Math. Phys., 39:1 (1997), 59–68 | DOI | MR | Zbl
[42] D. Borisov, P. Exner, R. Gadyl'shin, D. Krejčiřík, “Bound states in weakly deformed strips and layers”, Ann. Henri Poincaré, 2:3 (2001), 553–572 | DOI | MR | Zbl
[43] V. V. Grushin, “On the eigenvalues of finitely perturbed Laplace operators in infinite cylindrical domains”, Math. Notes, 75:3 (2004), 331–340 | DOI | DOI | MR | Zbl
[44] R. R. Gadyl'shin, “Local perturbations of quantum waveguides”, Theoret. and Math. Phys., 145:3 (2005), 1678–1690 | DOI | DOI | MR | Zbl
[45] D. I. Borisov, “Discrete spectrum of an asymmetric pair of waveguides coupled through a window”, Sb. Math., 197:4 (2006), 475–504 | DOI | DOI | MR | Zbl
[46] D. Borisov, P. Exner, R. Gadyl'shin, “Geometric coupling thresholds in a two-dimensional strip”, J. Math. Phys., 43:12 (2002), 6265–6278 | DOI | MR | Zbl
[47] M. van Dyke, Perturbation methods in fluid mechanics, Appl. Math. Mech., 8, Academic Press, New York–London, 1964, x+229 pp. | MR | Zbl | Zbl
[48] A. M. Il'in, Matching of asymptotic expansions of solutions of boundary value problems, Transl. Math. Monogr., 102, Amer. Math. Soc., Providence, RI, 1992, x+281 pp. | DOI | MR | MR | Zbl | Zbl
[49] V. Maz'ya, S. Nazarov, B. Plamenevskij, Asymptotic theory of elliptic boundary value problems in singularly perturbed domains, v. 1, Oper. Theory Adv. Appl., 111, Birkhäuser Verlag, Basel, 2000, xxiv+435 pp. ; v. 2, 112, xxiv+323 pp. | DOI | MR | Zbl | DOI | MR | Zbl
[50] V. A. Kozlov, V. G. Maz'ya, A. B. Movchan, Asymptotic analysis of fields in multi-structures, Oxford Math. Monogr., The Clarendon Press, Oxford Univ. Press, New York, 1999, xvi+282 pp. | MR | Zbl
[51] V. A. Kondrat'ev, “Boundary problems for elliptic equations in domains with conical or angular points”, Trans. Moscow Math. Soc., 16 (1967), 227–313 | MR | Zbl
[52] C. A. Nazarov, Yu. A. Romashev, “Izmenenie koeffitsienta intensivnosti pri razrushenii peremychki mezhdu dvumya kollinearnymi treschinami”, Izv. AN ArmSSR. Mekhanika, 35:4 (1982), 30–40 | Zbl
[53] S. A. Nazarov, “Asymptotic conditions at a point, selfadjoint extensions of operators, and the method of matched asymptotic expansions”, Proceedings of the St. Petersburg Mathematical Society, v. V, Amer. Math. Soc. Transl. Ser. 2, 193, Amer. Math. Soc., Providence, RI, 1999, 77–125 | DOI | MR | Zbl
[54] R. Mittra, S. W. Lee, Analytical techniques in the theory of guided waves, Macmillan Series in Electrical Science, The Macmillan Co., New York; Collier–Macmillan Ltd., London, 1971, ix+302 pp. | Zbl | Zbl
[55] C. H. Wilcox, Scattering theory for diffraction gratings, Appl. Math. Sci., 46, Springer-Verlag, New-York, 1984, ix+163 pp. | DOI | MR | Zbl
[56] V. Kozlov, “On the Hadamard formula for nonsmooth domains”, J. Differential Equations, 230:2 (2006), 532–555 | DOI | MR | Zbl
[57] V. Kozlov, “Domain dependence of eigenvalues of elliptic type operators”, Math. Ann., 357:4 (2013), 1509–1539 | DOI | MR | Zbl
[58] G. Cardone, T. Durante, S. A. Nazarov, “Water-waves modes trapped in a canal by a near-surface rough body”, ZAMM Z. Angew. Math. Mech., 90:12 (2010), 983–1004 | DOI | MR | Zbl
[59] G. Cardone, T. Durante, S. A. Nazarov, “Embedded eigenvalues of the Neumann problem in a strip with a box-shaped perturbation”, J. Math. Pures Appl. (9), 112 (2018), 1–40 | DOI | MR | Zbl
[60] S. A. Nazarov, “Waveguide with double threshold resonance at a simple threshold”, Sb. Math., 211:8 (2020), 1080–1126 | DOI | DOI | MR | Zbl