Local controllability and optimality
Sbornik. Mathematics, Tome 212 (2021) no. 7, pp. 887-920 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The concept of local controllability is introduced for a dynamical system; sufficient conditions for such controllability are presented. As a consequence, necessary conditions for a local infimum in an optimal control problem are obtained. These strengthen Pontryagin's maximum principle and extend it to more general classes of problems. Bibliography: 8 titles.
Keywords: local controllability, convex system, maximum principle.
Mots-clés : local infimum
@article{SM_2021_212_7_a0,
     author = {E. R. Avakov and G. G. Magaril-Il'yaev},
     title = {Local controllability and optimality},
     journal = {Sbornik. Mathematics},
     pages = {887--920},
     year = {2021},
     volume = {212},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_7_a0/}
}
TY  - JOUR
AU  - E. R. Avakov
AU  - G. G. Magaril-Il'yaev
TI  - Local controllability and optimality
JO  - Sbornik. Mathematics
PY  - 2021
SP  - 887
EP  - 920
VL  - 212
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2021_212_7_a0/
LA  - en
ID  - SM_2021_212_7_a0
ER  - 
%0 Journal Article
%A E. R. Avakov
%A G. G. Magaril-Il'yaev
%T Local controllability and optimality
%J Sbornik. Mathematics
%D 2021
%P 887-920
%V 212
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2021_212_7_a0/
%G en
%F SM_2021_212_7_a0
E. R. Avakov; G. G. Magaril-Il'yaev. Local controllability and optimality. Sbornik. Mathematics, Tome 212 (2021) no. 7, pp. 887-920. http://geodesic.mathdoc.fr/item/SM_2021_212_7_a0/

[1] R. V. Gamkrelidze, Principles of optimal control theory, Math. Concepts Methods Sci. Eng., 7, Rev. ed., Plenum Press, New York–London, 1978, xii+175 pp. | DOI | MR | Zbl

[2] E. B. Lee, L. Markus, Foundations of optimal control theory, John Wiley Sons, Inc., New York–London–Sydney, 1967, x+576 pp. | MR | MR | Zbl | Zbl

[3] E. R. Avakov, G. G. Magaril-Il'yaev, “Controllability and second-order necessary conditions for optimality”, Sb. Math., 210:1 (2019), 1–23 | DOI | DOI | MR | Zbl

[4] E. R. Avakov, G. G. Magaril-Il'yaev, “Generalized maximum principle in optimal control”, Dokl. Math., 98:3 (2018), 575–578 | DOI | DOI | Zbl

[5] E. R. Avakov, G. G. Magaril-Il'yaev, “Local infimum and a family of maximum principles in optimal control”, Sb. Math., 211:6 (2020), 750–785 | DOI | DOI | MR | Zbl

[6] A. F. Filippov, “O nekotorykh voprosakh teorii optimalnogo regulirovaniya”, Vestn. Mosk. un-ta. Ser. 2. Matem. Mekh. Astr. Fiz. Khim., 1959, no. 2, 25–32 | MR | Zbl

[7] V. A. Zorich, Mathematical analysis, v. II, Universitext, Springer-Verlag, Berlin, 2004, xvi+681 pp. | MR | MR | Zbl | Zbl

[8] V. M. Alekseev, V. M. Tikhomirov, S. V. Fomin, Optimal control, Contemp. Soviet Math., Consultants Bureau, New York, 1987, xiv+309 pp. | DOI | MR | MR | Zbl | Zbl