Mots-clés : local infimum
@article{SM_2021_212_7_a0,
author = {E. R. Avakov and G. G. Magaril-Il'yaev},
title = {Local controllability and optimality},
journal = {Sbornik. Mathematics},
pages = {887--920},
year = {2021},
volume = {212},
number = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2021_212_7_a0/}
}
E. R. Avakov; G. G. Magaril-Il'yaev. Local controllability and optimality. Sbornik. Mathematics, Tome 212 (2021) no. 7, pp. 887-920. http://geodesic.mathdoc.fr/item/SM_2021_212_7_a0/
[1] R. V. Gamkrelidze, Principles of optimal control theory, Math. Concepts Methods Sci. Eng., 7, Rev. ed., Plenum Press, New York–London, 1978, xii+175 pp. | DOI | MR | Zbl
[2] E. B. Lee, L. Markus, Foundations of optimal control theory, John Wiley Sons, Inc., New York–London–Sydney, 1967, x+576 pp. | MR | MR | Zbl | Zbl
[3] E. R. Avakov, G. G. Magaril-Il'yaev, “Controllability and second-order necessary conditions for optimality”, Sb. Math., 210:1 (2019), 1–23 | DOI | DOI | MR | Zbl
[4] E. R. Avakov, G. G. Magaril-Il'yaev, “Generalized maximum principle in optimal control”, Dokl. Math., 98:3 (2018), 575–578 | DOI | DOI | Zbl
[5] E. R. Avakov, G. G. Magaril-Il'yaev, “Local infimum and a family of maximum principles in optimal control”, Sb. Math., 211:6 (2020), 750–785 | DOI | DOI | MR | Zbl
[6] A. F. Filippov, “O nekotorykh voprosakh teorii optimalnogo regulirovaniya”, Vestn. Mosk. un-ta. Ser. 2. Matem. Mekh. Astr. Fiz. Khim., 1959, no. 2, 25–32 | MR | Zbl
[7] V. A. Zorich, Mathematical analysis, v. II, Universitext, Springer-Verlag, Berlin, 2004, xvi+681 pp. | MR | MR | Zbl | Zbl
[8] V. M. Alekseev, V. M. Tikhomirov, S. V. Fomin, Optimal control, Contemp. Soviet Math., Consultants Bureau, New York, 1987, xiv+309 pp. | DOI | MR | MR | Zbl | Zbl