Local controllability and optimality
Sbornik. Mathematics, Tome 212 (2021) no. 7, pp. 887-920
Voir la notice de l'article provenant de la source Math-Net.Ru
The concept of local controllability is introduced for a dynamical system; sufficient conditions for such controllability are presented. As a consequence, necessary conditions for a local infimum in an optimal control problem are obtained. These strengthen Pontryagin's maximum principle and extend it to more general classes of problems.
Bibliography: 8 titles.
Keywords:
local controllability, convex system, maximum principle.
Mots-clés : local infimum
Mots-clés : local infimum
@article{SM_2021_212_7_a0,
author = {E. R. Avakov and G. G. Magaril-Il'yaev},
title = {Local controllability and optimality},
journal = {Sbornik. Mathematics},
pages = {887--920},
publisher = {mathdoc},
volume = {212},
number = {7},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2021_212_7_a0/}
}
E. R. Avakov; G. G. Magaril-Il'yaev. Local controllability and optimality. Sbornik. Mathematics, Tome 212 (2021) no. 7, pp. 887-920. http://geodesic.mathdoc.fr/item/SM_2021_212_7_a0/