Local controllability and optimality
Sbornik. Mathematics, Tome 212 (2021) no. 7, pp. 887-920

Voir la notice de l'article provenant de la source Math-Net.Ru

The concept of local controllability is introduced for a dynamical system; sufficient conditions for such controllability are presented. As a consequence, necessary conditions for a local infimum in an optimal control problem are obtained. These strengthen Pontryagin's maximum principle and extend it to more general classes of problems. Bibliography: 8 titles.
Keywords: local controllability, convex system, maximum principle.
Mots-clés : local infimum
@article{SM_2021_212_7_a0,
     author = {E. R. Avakov and G. G. Magaril-Il'yaev},
     title = {Local controllability and optimality},
     journal = {Sbornik. Mathematics},
     pages = {887--920},
     publisher = {mathdoc},
     volume = {212},
     number = {7},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_7_a0/}
}
TY  - JOUR
AU  - E. R. Avakov
AU  - G. G. Magaril-Il'yaev
TI  - Local controllability and optimality
JO  - Sbornik. Mathematics
PY  - 2021
SP  - 887
EP  - 920
VL  - 212
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2021_212_7_a0/
LA  - en
ID  - SM_2021_212_7_a0
ER  - 
%0 Journal Article
%A E. R. Avakov
%A G. G. Magaril-Il'yaev
%T Local controllability and optimality
%J Sbornik. Mathematics
%D 2021
%P 887-920
%V 212
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2021_212_7_a0/
%G en
%F SM_2021_212_7_a0
E. R. Avakov; G. G. Magaril-Il'yaev. Local controllability and optimality. Sbornik. Mathematics, Tome 212 (2021) no. 7, pp. 887-920. http://geodesic.mathdoc.fr/item/SM_2021_212_7_a0/