Recovery of integrable functions and trigonometric series
Sbornik. Mathematics, Tome 212 (2021) no. 6, pp. 843-858 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Classes $\Gamma$ of $L_1$-functions with fixed rate of decrease of their Fourier coefficients are considered. For each class $\Gamma$, it is shown that there exists a (recovery) set $G$ with arbitrarily small measure such that any function in $\Gamma$ can be recovered from its values on $G$. A formula for evaluation of the Fourier coefficients of such a function from its values on $G$ is given. In addition, it is shown that, for any $L_1$-function, a function-specific recovery set can be found. The problem of recovery of general trigonometric series from the Zygmund classes which converge to summable functions on such sets $G$ is also solved. Bibliography: 10 titles.
Keywords: trigonometric series, Fourier series, recovery problem, $V$-set.
@article{SM_2021_212_6_a3,
     author = {M. G. Plotnikov},
     title = {Recovery of integrable functions and trigonometric series},
     journal = {Sbornik. Mathematics},
     pages = {843--858},
     year = {2021},
     volume = {212},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_6_a3/}
}
TY  - JOUR
AU  - M. G. Plotnikov
TI  - Recovery of integrable functions and trigonometric series
JO  - Sbornik. Mathematics
PY  - 2021
SP  - 843
EP  - 858
VL  - 212
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2021_212_6_a3/
LA  - en
ID  - SM_2021_212_6_a3
ER  - 
%0 Journal Article
%A M. G. Plotnikov
%T Recovery of integrable functions and trigonometric series
%J Sbornik. Mathematics
%D 2021
%P 843-858
%V 212
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2021_212_6_a3/
%G en
%F SM_2021_212_6_a3
M. G. Plotnikov. Recovery of integrable functions and trigonometric series. Sbornik. Mathematics, Tome 212 (2021) no. 6, pp. 843-858. http://geodesic.mathdoc.fr/item/SM_2021_212_6_a3/

[1] B. D. Boyanov, “Optimal quadrature formulae”, Russian Math. Surveys, 60:6 (2005), 1035–1055 | DOI | DOI | MR | Zbl

[2] S. A. Smolyak, Ob optimalnom vosstanovlenii funktsii i funktsionalov ot nikh, Diss. ... kand. fiz.-matem. nauk, MGU, M., 1965

[3] V. F. Babenko, V. V. Babenko, M. V. Polischuk, On optimal recovery of integrals of set-valued functions, arXiv: 1403.0840

[4] V. N. Temlyakov, “The Marcinkiewicz-type discretization theorems”, Constr. Approx., 48:2 (2018), 337–369 | DOI | MR | Zbl

[5] I. Daubechies, Ten lectures on wavelets, CBMS-NSF Regional Conf. Ser. in Appl. Math., 61, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992, xx+357 pp. | DOI | MR | Zbl | Zbl

[6] A. S. Kechris, A. Louveau, Descriptive set theory and the structure of sets of uniqueness, London Math. Soc. Lecture Note Ser., 128, Cambridge Univ. Press, Cambridge, 1987, viii+367 pp. | DOI | MR | Zbl

[7] A. Zygmund, Trigonometric series, v. I, 2nd ed., Cambridge Univ. Press, New York, 1959, xii+383 pp. | MR | MR | Zbl | Zbl

[8] J.-P. Kahane, Y. Katznelson, “Sur les ensembles d'unicité $U(\varepsilon)$ de Zygmund”, C. R. Acad. Sci. Paris Sér. A-B, 277 (1973), A893–A895 | MR | Zbl

[9] N. K. Bary, A treatise on trigonometric series, v. I, II, A Pergamon Press Book The Macmillan Co., New York, 1964, xxiii+553 pp., xix+508 pp. | MR | MR | Zbl

[10] I. P. Natanson, Theory of functions of a real variable, v. 1, 2, Frederick Ungar Publishing Co., New York, 1955, 1961, 277 pp., 265 pp. | MR | MR | Zbl