Multivariate Haar systems in Besov function spaces
Sbornik. Mathematics, Tome 212 (2021) no. 6, pp. 810-842
Voir la notice de l'article provenant de la source Math-Net.Ru
We determine all cases for which the $d$-dimensional Haar wavelet system $H^d$ on the unit cube $I^d$ is a conditional or unconditional Schauder basis in the classical isotropic Besov function spaces ${B}_{p,q,1}^s(I^d)$, $0$, $0\le s 1/p$, defined in terms of first-order $L_p$-moduli of smoothness. We obtain similar results for the tensor-product Haar system $\widetilde{H}^d$, and characterize the parameter range for which the dual of ${B}_{p,q,1}^s(I^d)$ is trivial for $0$.
Bibliography: 31 titles.
Keywords:
Haar system, unconditional convergence
Mots-clés : Besov spaces, Schauder bases in quasi-Banach spaces, piecewise-constant approximation.
Mots-clés : Besov spaces, Schauder bases in quasi-Banach spaces, piecewise-constant approximation.
@article{SM_2021_212_6_a2,
author = {P. Oswald},
title = {Multivariate {Haar} systems in {Besov} function spaces},
journal = {Sbornik. Mathematics},
pages = {810--842},
publisher = {mathdoc},
volume = {212},
number = {6},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2021_212_6_a2/}
}
P. Oswald. Multivariate Haar systems in Besov function spaces. Sbornik. Mathematics, Tome 212 (2021) no. 6, pp. 810-842. http://geodesic.mathdoc.fr/item/SM_2021_212_6_a2/