Multivariate Haar systems in Besov function spaces
Sbornik. Mathematics, Tome 212 (2021) no. 6, pp. 810-842 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We determine all cases for which the $d$-dimensional Haar wavelet system $H^d$ on the unit cube $I^d$ is a conditional or unconditional Schauder basis in the classical isotropic Besov function spaces ${B}_{p,q,1}^s(I^d)$, $0, $0\le s < 1/p$, defined in terms of first-order $L_p$-moduli of smoothness. We obtain similar results for the tensor-product Haar system $\widetilde{H}^d$, and characterize the parameter range for which the dual of ${B}_{p,q,1}^s(I^d)$ is trivial for $0. Bibliography: 31 titles.
Keywords: Haar system, unconditional convergence
Mots-clés : Besov spaces, Schauder bases in quasi-Banach spaces, piecewise-constant approximation.
@article{SM_2021_212_6_a2,
     author = {P. Oswald},
     title = {Multivariate {Haar} systems in {Besov} function spaces},
     journal = {Sbornik. Mathematics},
     pages = {810--842},
     year = {2021},
     volume = {212},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_6_a2/}
}
TY  - JOUR
AU  - P. Oswald
TI  - Multivariate Haar systems in Besov function spaces
JO  - Sbornik. Mathematics
PY  - 2021
SP  - 810
EP  - 842
VL  - 212
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2021_212_6_a2/
LA  - en
ID  - SM_2021_212_6_a2
ER  - 
%0 Journal Article
%A P. Oswald
%T Multivariate Haar systems in Besov function spaces
%J Sbornik. Mathematics
%D 2021
%P 810-842
%V 212
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2021_212_6_a2/
%G en
%F SM_2021_212_6_a2
P. Oswald. Multivariate Haar systems in Besov function spaces. Sbornik. Mathematics, Tome 212 (2021) no. 6, pp. 810-842. http://geodesic.mathdoc.fr/item/SM_2021_212_6_a2/

[1] Z. Ciesielski, J. Domsta, “Construction of an orthonormal basis in $C^m(I^d)$ and $W^m_p(I^d)$”, Studia Math., 41:2 (1972), 211–224 | DOI | MR | Zbl

[2] Z. Ciesielski, “Constructive function theory and spline systems”, Studia Math., 53:3 (1975), 277–302 | DOI | MR | Zbl

[3] Z. Ciesielski, “Haar orthogonal functions in analysis and probability”, A. Haar memorial conference (Budapest, 1985), v. I, II, Colloq. Math. Soc. János Bolyai, 49, North-Holland, Amsterdam, 1987, 25–56 | MR | Zbl

[4] Z. Ciesielski, T. Figiel, “Spline approximation and Besov spaces on compact manifolds”, Studia Math., 75:1 (1982), 13–36 | DOI | MR | Zbl

[5] Z. Ciesielski, T. Figiel, “Spline bases in classical function spaces on compact $C^\infty$ manifolds. I”, Studia Math., 76:1 (1983), 1–58 | DOI | MR | Zbl

[6] Z. Ciesielski, T. Figiel, “Spline bases in classical function spaces on compact $C^\infty$ manifolds. II”, Studia Math., 76:2 (1983), 95–136 | DOI | MR | Zbl

[7] R. A. DeVore, V. A. Popov, “Interpolation of Besov spaces”, Trans. Amer. Math. Soc., 305:1 (1988), 397–414 | DOI | MR | Zbl

[8] G. Garrigós, A. Seeger, T. Ullrich, “The Haar system as a Schauder basis in spaces of Hardy–Sobolev type”, J. Fourier Anal. Appl., 24:5 (2018), 1319–1339 | DOI | MR | Zbl

[9] G. Garrigós, A. Seeger, T. Ullrich, “Basis properties of the Haar system in limiting Besov spaces”, Geometric aspects of harmonic analysis, In honor of the 70th birthday of F. Ricci, Springer INDAM series, 45, Springer, 2021 (to appear); arXiv: 1901.09117

[10] G. Garrigós, A. Seeger, T. Ullrich, “The Haar system in Triebel–Lizorkin spaces: endpoint results”, Dedicated to G. Weiss on his 92nd birthday, J. Geom. Anal., Publ. online: 2021, 1–45 ; arXiv: 1907.03738 | DOI

[11] B. I. Golubov, “Best approximations of functions in the $L_p$ metric by Haar and Walsh polynomials”, Math. USSR-Sb., 16:2 (1972), 265–285 | DOI | MR | Zbl

[12] B. S. Kashin, A. A. Saakyan, Orthogonal series, Transl. Math. Monogr., 75, Amer. Math. Soc., Providence, RI, 1989, xii+451 pp. | MR | MR | Zbl | Zbl

[13] V. G. Krotov, “Unconditional convergence of Fourier series with respect to the Haar system in the spaces $\Lambda_\omega^p$”, Math. Notes, 23:5 (1978), 376–382 | DOI | MR | Zbl

[14] V. G. Krotov, “Unconditional basicity of the Haar system in the spaces $\Lambda_\omega^1$”, Math. Notes, 32:5 (1982), 822–827 | DOI | MR | Zbl

[15] P. Osvald, “Priblizhenie splainami v metrike $L^p$, $0

1$”, Math. Nachr., 94 (1980), 69–96 | DOI | MR | Zbl

[16] P. Oswald, “On inequalities for spline approximation and spline systems in the space $L^p$ ($0

1$)”, Approximation and function spaces (Gdańsk, 1979), North-Holland, Amsterdam–New York, 1981, 531–552 | MR | Zbl

[17] P. Oswald, Multilevel finite element approximation. Theory and applications, Teubner Skr. Numer., B. G. Teubner, Stuttgart, 1994, 160 pp. | DOI | MR | Zbl

[18] P. Oswald, Haar system as Schauder basis in Besov spaces: the limiting cases for $0

\le 1$, arXiv: 1808.08156

[19] V. S. Romanyuk, “Multiple Haar basis and $m$-term approximations for functions from the Besov classes. I”, Ukrainian Math. J., 68:4 (2016), 625–637 | DOI | MR | Zbl

[20] V. S. Romanyuk, “Multiple Haar basis and m-term approximations for functions from the Besov classes. II”, Ukrainian Math. J., 68:6 (2016), 928–939 | DOI | MR | Zbl

[21] S. Ropela, “Spline bases in Besov spaces”, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 24:5 (1976), 319–325 | MR | Zbl

[22] A. Seeger, T. Ullrich, “Haar projection numbers and failure of unconditional convergence in Sobolev spaces”, Math. Z., 285:1-2 (2017), 91–119 | DOI | MR | Zbl

[23] A. Seeger, T. Ullrich, “Lower bounds for Haar projections: deterministic examples”, Constr. Approx., 46:2 (2017), 227–242 | DOI | MR | Zbl

[24] È. A. Storozhenko, V. G. Krotov, P. Oswald, “Direct and converse theorems of Jackson type in $L^p$ spaces, $0

1$”, Math. USSR-Sb., 27:3 (1975), 355–374 | DOI | MR | Zbl

[25] H. Triebel, “Über die Existenz von Schauderbasen in Sobolev–Besov–Räumen. Isomorphiebeziehungen”, Studia Math., 46:1 (1973), 83–100 | DOI | MR | Zbl

[26] H. Triebel, “On Haar bases in Besov spaces”, Serdica, 4:4 (1978), 330–343 | MR | Zbl

[27] H. Triebel, Theory of function spaces. III, Monogr. Math., 100, Birkhäuser Verlag, Basel, 2006, xii+426 pp. | DOI | MR | Zbl

[28] H. Triebel, Function spaces and wavelets on domains, EMS Tracts Math., 7, Eur. Math. Soc., Zürich, 2008, x+256 pp. | DOI | MR | Zbl

[29] H. Triebel, Bases in function spaces, sampling, discrepancy, numerical integration, EMS Tracts Math., 11, Eur. Math. Soc., Zürich, 2010, x+296 pp. | DOI | MR | Zbl

[30] P. L. Ulyanov, “O ryadakh po sisteme Khaara”, Matem. sb., 63(105):3 (1964), 356–391 | MR | Zbl

[31] Wen Yuan, W. Sickel, Dachun Yang, “The Haar system in Besov-type spaces”, Studia Math., 253:2 (2020), 129–162 | DOI | MR | Zbl